A Survey on Super Resolution for video Enhancement Using GAN
- URL: http://arxiv.org/abs/2312.16471v2
- Date: Sat, 30 Dec 2023 06:05:06 GMT
- Title: A Survey on Super Resolution for video Enhancement Using GAN
- Authors: Ankush Maity, Roshan Pious, Sourabh Kumar Lenka, Vishal Choudhary and
Prof. Sharayu Lokhande
- Abstract summary: Recent developments in super-resolution image and video using deep learning algorithms such as Generative Adversarial Networks are covered.
Advancements aim to increase the visual clarity and quality of low-resolution video, have tremendous potential in a variety of sectors ranging from surveillance technology to medical imaging.
This collection delves into the wider field of Generative Adversarial Networks, exploring their principles, training approaches, and applications across a broad range of domains.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This compilation of various research paper highlights provides a
comprehensive overview of recent developments in super-resolution image and
video using deep learning algorithms such as Generative Adversarial Networks.
The studies covered in these summaries provide fresh techniques to addressing
the issues of improving image and video quality, such as recursive learning for
video super-resolution, novel loss functions, frame-rate enhancement, and
attention model integration. These approaches are frequently evaluated using
criteria such as PSNR, SSIM, and perceptual indices. These advancements, which
aim to increase the visual clarity and quality of low-resolution video, have
tremendous potential in a variety of sectors ranging from surveillance
technology to medical imaging. In addition, this collection delves into the
wider field of Generative Adversarial Networks, exploring their principles,
training approaches, and applications across a broad range of domains, while
also emphasizing the challenges and opportunities for future research in this
rapidly advancing and changing field of artificial intelligence.
Related papers
- A Review of Image Retrieval Techniques: Data Augmentation and Adversarial Learning Approaches [0.0]
This review focuses on the roles of data augmentation and adversarial learning techniques in enhancing retrieval performance.
Data augmentation enhances the model's generalization ability and robustness by generating more diverse training samples, simulating real-world variations, and reducing overfitting.
adversarial attacks and defenses introduce perturbations during training to improve the model's robustness against potential attacks.
arXiv Detail & Related papers (2024-09-02T12:55:17Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Methods and strategies for improving the novel view synthesis quality of neural radiation field [0.3499870393443268]
NeRF technology can learn a 3D implicit model of a scene from 2D images and synthesize realistic novel view images.
In response to the problem that the rendering quality of NeRF images needs to be improved, many researchers have proposed various methods to improve the rendering quality in the past three years.
This study can help researchers quickly understand the current state and evolutionary context of technology in this field.
arXiv Detail & Related papers (2024-01-23T02:30:16Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Deep Neural Network-based Enhancement for Image and Video Streaming
Systems: A Survey and Future Directions [20.835654670825782]
Deep learning has led to unprecedented performance in generating high-quality images from low-quality ones.
We present state-of-the-art content delivery systems that employ neural enhancement as a key component in achieving both fast response time and high visual quality.
arXiv Detail & Related papers (2021-06-07T15:42:36Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
Video summarization technologies aim to create a concise and complete synopsis by selecting the most informative parts of the video content.
This work focuses on the recent advances in the area and provides a comprehensive survey of the existing deep-learning-based methods for generic video summarization.
arXiv Detail & Related papers (2021-01-15T11:41:29Z) - An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time
Video Enhancement [132.60976158877608]
We propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples.
In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information.
The proposed design allows our recurrent cells to efficiently propagate-temporal-information across frames and reduces the need for high complexity networks.
arXiv Detail & Related papers (2020-12-24T00:03:29Z) - Neural Enhancement in Content Delivery Systems: The State-of-the-Art and
Future Directions [16.04084457087104]
Deep learning has led to unprecedented performance in generating high-quality images from low-quality ones.
We present state-of-the-art content delivery systems that employ neural enhancement as a key component in achieving both fast response time and high visual quality.
arXiv Detail & Related papers (2020-10-12T16:41:29Z) - Video Super Resolution Based on Deep Learning: A Comprehensive Survey [87.30395002197344]
We comprehensively investigate 33 state-of-the-art video super-resolution (VSR) methods based on deep learning.
We propose a taxonomy and classify the methods into six sub-categories according to the ways of utilizing inter-frame information.
We summarize and compare the performance of the representative VSR method on some benchmark datasets.
arXiv Detail & Related papers (2020-07-25T13:39:54Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.