論文の概要: Continuous-time Autoencoders for Regular and Irregular Time Series Imputation
- arxiv url: http://arxiv.org/abs/2312.16581v3
- Date: Mon, 24 Jun 2024 06:53:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 02:32:50.666035
- Title: Continuous-time Autoencoders for Regular and Irregular Time Series Imputation
- Title(参考訳): 正規および不規則な時系列インプットのための連続時間オートエンコーダ
- Authors: Hyowon Wi, Yehjin Shin, Noseong Park,
- Abstract要約: 時系列計算は、時系列の最も基本的なタスクの1つである。
最近の自己注意に基づく手法は、最先端の計算性能を示している。
連続時間リカレントニューラルネットワークに基づく計算法の設計は,長年にわたって見過ごされてきた。
- 参考スコア(独自算出の注目度): 21.25279298572273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series imputation is one of the most fundamental tasks for time series. Real-world time series datasets are frequently incomplete (or irregular with missing observations), in which case imputation is strongly required. Many different time series imputation methods have been proposed. Recent self-attention-based methods show the state-of-the-art imputation performance. However, it has been overlooked for a long time to design an imputation method based on continuous-time recurrent neural networks (RNNs), i.e., neural controlled differential equations (NCDEs). To this end, we redesign time series (variational) autoencoders based on NCDEs. Our method, called continuous-time autoencoder (CTA), encodes an input time series sample into a continuous hidden path (rather than a hidden vector) and decodes it to reconstruct and impute the input. In our experiments with 4 datasets and 19 baselines, our method shows the best imputation performance in almost all cases.
- Abstract(参考訳): 時系列計算は、時系列の最も基本的なタスクの1つである。
実世界の時系列データセットは、しばしば不完全である(または観測が不完全である)。
多くの異なる時系列計算法が提案されている。
最近の自己注意に基づく手法は、最先端の計算性能を示している。
しかし、連続時間リカレントニューラルネットワーク(RNN)、すなわちニューラル制御微分方程式(NCDE)に基づく計算法の設計は長い間見過ごされてきた。
この目的のために、NCDEに基づいて時系列(変分)オートエンコーダを再設計する。
連続時間オートエンコーダ (Continuous-time Autoencoder, CTA) と呼ばれる手法では、入力時系列のサンプルを(隠れベクトルではなく)連続的に隠された経路にエンコードし、それを復号して入力を再構成し、インプットする。
4つのデータセットと19のベースラインを用いた実験では,ほぼすべてのケースで最高の計算性能を示した。
関連論文リスト
- TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Benchは、ディープラーニング技術を利用した時系列計算のための総合ベンチマークスイートである。
TSI-Benchパイプラインは、実験的な設定を標準化し、計算アルゴリズムの公平な評価を可能にする。
TSI-Benchは、計算目的のために時系列予測アルゴリズムを調整するための体系的なパラダイムを革新的に提供する。
論文 参考訳(メタデータ) (2024-06-18T16:07:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - TimeMAE: Self-Supervised Representations of Time Series with Decoupled
Masked Autoencoders [55.00904795497786]
トランスフォーマネットワークに基づく転送可能な時系列表現を学習するための,新しい自己教師型パラダイムであるTimeMAEを提案する。
TimeMAEは双方向符号化方式を用いて時系列の豊富な文脈表現を学習する。
新たに挿入されたマスク埋め込みによって生じる不一致を解消するため、分離されたオートエンコーダアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-01T08:33:16Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - NRTSI: Non-Recurrent Time Series Imputation for Irregularly-sampled Data [14.343059464246425]
時系列計算は、欠落したデータで時系列を理解するための基本的なタスクである。
再帰モジュールを持たない新しい計算モデル NRTSI を提案する。
NRTSIは不規則にサンプリングされたデータを容易に処理でき、多重モードの計算を行い、次元が部分的に観察されるシナリオを処理できる。
論文 参考訳(メタデータ) (2021-02-05T18:41:25Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
時系列データ計算は、様々なカテゴリのメソッドでよく研究されている問題である。
ディープラーニングに基づく時系列手法は、RNNのようなモデルの使用によって進歩している。
我々は,それらのモデルアーキテクチャ,その長所,短所,短所,および時系列計算手法の開発を示す効果をレビューし,議論する。
論文 参考訳(メタデータ) (2020-11-23T11:57:27Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
不規則にサンプリングされた時系列は、医療を含む多くの領域で発生する。
連続だが観測されていない関数からサンプリングされた指数値対の列として、不規則にサンプリングされた時系列データをモデル化する。
本稿では,変分オートエンコーダと生成対向ネットワークに基づく学習手法を提案する。
論文 参考訳(メタデータ) (2020-08-17T20:01:55Z) - Neural ODEs for Informative Missingness in Multivariate Time Series [0.7233897166339269]
例えば、センサデータ、医療、天候といった実践的な応用は、真に連続したデータを生成する。
GRU-Dと呼ばれるディープラーニングモデルは、時系列データにおける情報不足に対処するための初期の試みである。
ニューラルネットワークの新しいファミリーであるNeural ODEsは、連続した時系列データを処理するのに自然で効率的である。
論文 参考訳(メタデータ) (2020-05-20T00:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。