Continuous-time Autoencoders for Regular and Irregular Time Series Imputation
- URL: http://arxiv.org/abs/2312.16581v3
- Date: Mon, 24 Jun 2024 06:53:23 GMT
- Title: Continuous-time Autoencoders for Regular and Irregular Time Series Imputation
- Authors: Hyowon Wi, Yehjin Shin, Noseong Park,
- Abstract summary: Time series imputation is one of the most fundamental tasks for time series.
Recent self-attention-based methods show the state-of-the-art imputation performance.
It has been overlooked for a long time to design an imputation method based on continuous-time recurrent neural networks.
- Score: 21.25279298572273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series imputation is one of the most fundamental tasks for time series. Real-world time series datasets are frequently incomplete (or irregular with missing observations), in which case imputation is strongly required. Many different time series imputation methods have been proposed. Recent self-attention-based methods show the state-of-the-art imputation performance. However, it has been overlooked for a long time to design an imputation method based on continuous-time recurrent neural networks (RNNs), i.e., neural controlled differential equations (NCDEs). To this end, we redesign time series (variational) autoencoders based on NCDEs. Our method, called continuous-time autoencoder (CTA), encodes an input time series sample into a continuous hidden path (rather than a hidden vector) and decodes it to reconstruct and impute the input. In our experiments with 4 datasets and 19 baselines, our method shows the best imputation performance in almost all cases.
Related papers
- TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
arXiv Detail & Related papers (2024-06-18T16:07:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - TimeMAE: Self-Supervised Representations of Time Series with Decoupled
Masked Autoencoders [55.00904795497786]
We propose TimeMAE, a novel self-supervised paradigm for learning transferrable time series representations based on transformer networks.
The TimeMAE learns enriched contextual representations of time series with a bidirectional encoding scheme.
To solve the discrepancy issue incurred by newly injected masked embeddings, we design a decoupled autoencoder architecture.
arXiv Detail & Related papers (2023-03-01T08:33:16Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - NRTSI: Non-Recurrent Time Series Imputation for Irregularly-sampled Data [14.343059464246425]
Time series imputation is a fundamental task for understanding time series with missing data.
We propose a novel imputation model called NRTSI without any recurrent modules.
NRTSI can easily handle irregularly-sampled data, perform multiple-mode imputation, and handle the scenario where dimensions are partially observed.
arXiv Detail & Related papers (2021-02-05T18:41:25Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
Time series data imputation is a well-studied problem with different categories of methods.
Time series methods based on deep learning have made progress with the usage of models like RNN.
We will review and discuss their model architectures, their pros and cons as well as their effects to show the development of the time series imputation methods.
arXiv Detail & Related papers (2020-11-23T11:57:27Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
Irregularly-sampled time series occur in many domains including healthcare.
We model irregularly-sampled time series data as a sequence of index-value pairs sampled from a continuous but unobserved function.
We propose learning methods for this framework based on variational autoencoders and generative adversarial networks.
arXiv Detail & Related papers (2020-08-17T20:01:55Z) - Neural ODEs for Informative Missingness in Multivariate Time Series [0.7233897166339269]
Practical applications, e.g., sensor data, healthcare, weather, generates data that is in truth continuous in time.
Deep learning model called GRU-D is one early attempt to address informative missingness in time series data.
New family of neural networks called Neural ODEs are natural and efficient for processing time series data which is continuous in time.
arXiv Detail & Related papers (2020-05-20T00:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.