論文の概要: Fault Tolerant Serverless VFL Over Dynamic Device Environment
- arxiv url: http://arxiv.org/abs/2312.16638v2
- Date: Tue, 30 Jul 2024 00:07:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-31 22:29:35.620470
- Title: Fault Tolerant Serverless VFL Over Dynamic Device Environment
- Title(参考訳): 動的デバイス環境におけるフォールトトレラントなサーバレスVFL
- Authors: Surojit Ganguli, Zeyu Zhou, Christopher G. Brinton, David I. Inouye,
- Abstract要約: 本稿では,DN-VFLと呼ばれる動的ネットワーク条件下での垂直的フェデレーション学習(VFL)の試験時間性能について検討する。
我々は,複製,ゴシップ,選択的特徴欠落を合成し,ベースラインよりも性能を大幅に向上させる,マルチプルアグリゲーション(Multiple Aggregation with Gossip Rounds and Simulated Faults (MAGS))と呼ばれる新しいDN-VFLアプローチを開発した。
- 参考スコア(独自算出の注目度): 15.757660512833006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertical Federated learning (VFL) is a class of FL where each client shares the same set of samples but only owns a subset of the features. Usually, VFL assumes perfect hardware and communication capabilities. However, this assumption hinders the broad deployment of VFL, particularly on a network of edge devices, which are heterogeneous in their in-situ capabilities while any device may connect/disconnect from the network over time. To address this gap, we study the test time performance of VFL under dynamic network conditions, which we call DN-VFL. We first formalize DN-VFL, including a message passing distributed inference algorithm, the corresponding risk, and a serverless setup. We develop a novel DN-VFL approach called Multiple Aggregation with Gossip Rounds and Simulated Faults (MAGS) that synthesizes replication, gossiping, and selective feature omission to improve performance significantly over baselines. Furthermore, we propose metrics and extensively analyze MAGS using a simulated sensor network. The results show that naively using VFL for DN-VFL is not the best approach. Rather, MAGS present a better alternative to handle changes in the network during inference.
- Abstract(参考訳): Vertical Federated Learning (VFL) はFLのクラスであり、各クライアントは同じサンプルセットを共有しているが、機能のサブセットしか持っていない。
通常、VFLは完璧なハードウェアと通信機能を前提としている。
しかしながら、この仮定は、特にエッジデバイスのネットワークにおいて、VFLの広範な展開を妨げる。
このギャップに対処するため,DN-VFLと呼ばれる動的ネットワーク条件下でのVFLの試験時間性能について検討した。
まず、メッセージパッシング分散推論アルゴリズム、対応するリスク、サーバーレス設定を含むDN-VFLを定式化する。
我々は,複製,ゴシップ,選択的特徴欠落を合成し,ベースラインよりも性能を大幅に向上させる,マルチプルアグリゲーション(Multiple Aggregation with Gossip Rounds and Simulated Faults (MAGS))と呼ばれる新しいDN-VFLアプローチを開発した。
さらに,シミュレーションセンサネットワークを用いて,MAGSを広範囲に解析する手法を提案する。
その結果、DN-VFLにVFLを選択的に使用するのが最善の方法ではないことがわかった。
むしろ、MAGSは推論中にネットワークの変更を処理するためのより良い代替手段を提供する。
関連論文リスト
- Collaborative Value Function Estimation Under Model Mismatch: A Federated Temporal Difference Analysis [55.13545823385091]
フェデレーション強化学習(FedRL)は、エージェント間のデータ交換を防止し、データのプライバシを維持しながら協調学習を可能にする。
現実世界のアプリケーションでは、各エージェントは若干異なる遷移ダイナミクスを経験し、固有のモデルミスマッチを引き起こす。
我々は、中程度のレベルの情報共有でも、環境固有のエラーを著しく軽減できることを示した。
論文 参考訳(メタデータ) (2025-03-21T18:06:28Z) - Vertical Federated Learning for Failure-Cause Identification in Disaggregated Microwave Networks [5.789459834052429]
本稿では,非凝集マイクロ波ネットワークにおけるフェデレートラーニングの適用について検討する。
実験結果から,集中型シナリオに対して,F1スコアを少なくとも1%の間隔で連続的に達成できることが示唆された。
論文 参考訳(メタデータ) (2025-02-05T04:09:15Z) - Failure-Resilient Distributed Inference with Model Compression over Heterogeneous Edge Devices [9.423705897088672]
ヘテロジニアスエッジデバイス上でのディープニューラルネットワークベース推論タスクの局所分散実行のための堅牢な協調推論機構であるRoCoInを提案する。
分散配置のための知識蒸留を用いて、大規模なモデルから学習される、独立的でコンパクトな学生モデルのセットを作成する。
特に、デバイスは戦略的にグループ化され、同じ学生モデルを冗長にデプロイし、実行し、推論プロセスが任意のローカル障害に対して回復力を持つようにします。
論文 参考訳(メタデータ) (2024-06-20T10:43:53Z) - AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks [15.195798715517315]
Split Federated Learning(SFL)は、モデルのパーティショニングを通じて、最初のトレーニングワークロードをサーバにfloadする、有望なソリューションである。
本稿では,資源制約付きエッジコンピューティングシステムにおいて,SFLを高速化するための新しいリソース適応型SFLフレームワークであるAdaptSFLを提案する。
論文 参考訳(メタデータ) (2024-03-19T19:05:24Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - Federated Learning for Computationally-Constrained Heterogeneous
Devices: A Survey [3.219812767529503]
フェデレートラーニング(FL)は、通信オーバーヘッドとモデルの正確性の間のトレードオフをプライバシ保護する。
現実のアプリケーションに広く適用するためにFLが克服しなければならない課題について概説する。
論文 参考訳(メタデータ) (2023-07-18T12:05:36Z) - VertiBench: Advancing Feature Distribution Diversity in Vertical
Federated Learning Benchmarks [31.08004805380727]
本稿では,VFLの性能に影響を及ぼす2つの要因について紹介する。
また、画像イメージのVFLシナリオの欠点に対応するために、実際のVFLデータセットも導入する。
論文 参考訳(メタデータ) (2023-07-05T05:55:08Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning(FL)は、サーバがプライベートデータセットにアクセスすることなく、複数のデバイスによって更新されたモデルを集約する、プライバシ保護の分散学習フレームワークである。
本稿では,無線ネットワークにおけるHFLのモデルプルーニングを導入し,ニューラルネットワークの規模を小さくする。
提案するHFLは,モデルプルーニングを伴わないHFLと比較して学習精度が良く,通信コストが約50%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-15T22:04:49Z) - Low-Latency Cooperative Spectrum Sensing via Truncated Vertical
Federated Learning [51.51440623636274]
データプライバシを損なうことなく、複数のセカンダリユーザ(SU)にまたがる分散機能を活用できる垂直連合学習(VFL)フレームワークを提案する。
学習プロセスの高速化を目的として,T-VFL(Truncated vertical Federated Learning)アルゴリズムを提案する。
T-VFLの収束性能は、数学的解析によって提供され、シミュレーション結果によって正当化される。
論文 参考訳(メタデータ) (2022-08-07T10:39:27Z) - Towards Communication-efficient Vertical Federated Learning Training via
Cache-enabled Local Updates [25.85564668511386]
CELU-VFLは,新しい,効率的な垂直学習フレームワークである。
CELU-VFLは、ローカル更新技術を利用して、サードパーティ間の通信ラウンドを減らす。
CELU-VFLは既存の作業の最大6倍高速であることを示す。
論文 参考訳(メタデータ) (2022-07-29T12:10:36Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
フェデレートラーニング(FL)は、データプライバシを保護するために複数のデバイスに格納された分散生データを共有することなく、グローバルモデルのトレーニングを可能にする。
本稿では,階層型同期FLフレームワークであるFedHiSynを提案し,トラグラー効果や時代遅れモデルの問題に対処する。
提案手法は,MNIST,EMNIST,CIFAR10,CIFAR100のデータセットと多種多様なデバイス設定に基づいて評価する。
論文 参考訳(メタデータ) (2022-06-21T17:23:06Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
フェデレートラーニング(FL)は、デバイスの分散コンピューティング機能を活用した効率的なコミュニケーションとコンピューティングのための重要な実現手段である。
本稿では、FLと幅調整可能なスリムブルニューラルネットワーク(SNN)を統合した新しい学習フレームワークを提案する。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2022-03-26T15:06:13Z) - Desirable Companion for Vertical Federated Learning: New Zeroth-Order
Gradient Based Algorithm [140.25480610981504]
VFLアルゴリズムを評価するための指標の完全なリストには、モデル適用性、プライバシ、通信、計算効率が含まれるべきである。
ブラックボックスのスケーラビリティを備えた新しいVFLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-19T13:55:47Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
本稿では,2つの相乗的技術,フェデレートラーニング(FL)と幅調整可能なスリムブルニューラルネットワーク(SNN)を統合することを目的とする。
FLは、ローカルに訓練されたモバイルデバイスのモデルを交換することによって、データのプライバシを保護している。しかしながら、SNNは、特に時間変化のあるチャネル条件との無線接続下では、非自明である。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:17:17Z) - Federated Learning Based on Dynamic Regularization [43.137064459520886]
本稿では,ニューラルネットワークモデルを分散学習するための新しいフェデレーション学習手法を提案する。
サーバは、各ラウンドでランダムに選択されたデバイスのサブセット間の協力を編成する。
論文 参考訳(メタデータ) (2021-11-08T03:58:28Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Bayesian Federated Learning over Wireless Networks [87.37301441859925]
フェデレーションラーニングは、ローカルデバイスに保存された異種データセットを使用したプライバシー保護と分散トレーニング方法です。
本稿では、スケーラブルBFL (SBFL) と呼ばれる効率的な修正BFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-31T07:32:44Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - Neural Network Approximation of Graph Fourier Transforms for Sparse
Sampling of Networked Flow Dynamics [13.538871180763156]
水分配ネットワーク(WDN)は、複雑なカスケード力学を持つ大規模ネットワーククリティカルシステムであり、予測が難しい。
既存のアプローチでは、最小限の監視ポイントを見つけるために、多目的最適化を使用しているが、性能保証や理論的な枠組みが欠如している。
そこで我々はまず,ネットワーク汚染拡散ダイナミクスを圧縮し,本質的なデータ収集点を推論性能保証とともに同定するグラフフーリエ変換(GFT)演算子を開発した。
次に、自動エンコーダ(AE)にインスパイアされたニューラルネットワーク(NN)を構築し、GFTサンプリングプロセスを一般化し、初期からさらにアンダーサンプリングする。
論文 参考訳(メタデータ) (2020-02-11T20:18:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。