論文の概要: AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks
- arxiv url: http://arxiv.org/abs/2403.13101v3
- Date: Wed, 22 May 2024 07:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 12:57:52.104129
- Title: AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks
- Title(参考訳): AdaptSFL:資源制約エッジネットワークにおける適応的分割学習
- Authors: Zheng Lin, Guanqiao Qu, Wei Wei, Xianhao Chen, Kin K. Leung,
- Abstract要約: Split Federated Learning(SFL)は、モデルのパーティショニングを通じて、最初のトレーニングワークロードをサーバにfloadする、有望なソリューションである。
本稿では,資源制約付きエッジコンピューティングシステムにおいて,SFLを高速化するための新しいリソース適応型SFLフレームワークであるAdaptSFLを提案する。
- 参考スコア(独自算出の注目度): 15.195798715517315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing complexity of deep neural networks poses significant barriers to democratizing them to resource-limited edge devices. To address this challenge, split federated learning (SFL) has emerged as a promising solution by of floading the primary training workload to a server via model partitioning while enabling parallel training among edge devices. However, although system optimization substantially influences the performance of SFL under resource-constrained systems, the problem remains largely uncharted. In this paper, we provide a convergence analysis of SFL which quantifies the impact of model splitting (MS) and client-side model aggregation (MA) on the learning performance, serving as a theoretical foundation. Then, we propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems. Specifically, AdaptSFL adaptively controls client-side MA and MS to balance communication-computing latency and training convergence. Extensive simulations across various datasets validate that our proposed AdaptSFL framework takes considerably less time to achieve a target accuracy than benchmarks, demonstrating the effectiveness of the proposed strategies.
- Abstract(参考訳): ディープニューラルネットワークの複雑さの増大は、リソース制限されたエッジデバイスにそれらを民主化する上で、大きな障壁となる。
この課題に対処するため、分割フェデレーション学習(SFL)は、エッジデバイス間の並列トレーニングを可能にしながら、モデルのパーティショニングを通じて、プライマリトレーニングワークロードをサーバにフロードすることで、有望なソリューションとして登場した。
しかし、システム最適化は資源制約付きシステムにおけるSFLの性能に大きく影響するが、問題は未解決のままである。
本稿では、モデル分割(MS)とクライアント側モデル集約(MA)が学習性能に与える影響を定量化するSFLの収束解析を行い、理論的基礎となる。
そこで我々は,資源制約付きエッジコンピューティングシステムの下でSFLを高速化する新しいリソース適応型SFLフレームワークであるAdaptSFLを提案する。
具体的には、AdaptSFLはクライアント側MAとMSを適応的に制御し、通信計算のレイテンシとトレーニング収束のバランスをとる。
提案するAdaptSFLフレームワークは,ベンチマークよりも目標精度を達成するのに要する時間を大幅に削減し,提案手法の有効性を実証する。
関連論文リスト
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
フェデレートラーニング(FL)は、エッジデバイスが生データを共有せずに、機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、電力、帯域幅などの制約のあるリソースを持つモバイルエッジネットワーク上にFLをデプロイすることは、高いトレーニングレイテンシと低いモデルの精度に悩まされる。
本稿では,資源制約と不確実性の下で,モバイルエッジネットワーク上でのFLの最適なクライアントスケジューリングとリソース割り当てについて検討する。
論文 参考訳(メタデータ) (2024-09-29T01:56:45Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - Robust Model Aggregation for Heterogeneous Federated Learning: Analysis and Optimizations [35.58487905412915]
異種システムのための時間駆動型SFL(T-SFL)フレームワークを提案する。
T-SFLの学習性能を評価するため,大域的損失関数の上限を提供する。
本研究では,所定のしきい値以下に反復回数が減少するクライアントから局所モデルを除去する識別モデル選択アルゴリズムを開発する。
論文 参考訳(メタデータ) (2024-05-11T11:55:26Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
本稿では,エッジコンピューティングパラダイムと並列分割学習(PSL)の統合を提唱する。
そこで本研究では,モデル学習を高速化するために,効率的な並列分割学習(EPSL)という革新的なPSLフレームワークを提案する。
提案するEPSLフレームワークは,目標精度を達成するために必要なトレーニング遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2023-03-26T16:09:48Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
大規模MECネットワーク上でPFLをデプロイするアルゴリズムである階層型PFL(HPFL)を提案する。
HPFLは、最適帯域割り当てを共同で決定しながら、トレーニング損失最小化とラウンドレイテンシ最小化の目的を組み合わせる。
論文 参考訳(メタデータ) (2023-03-19T06:00:05Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。