論文の概要: Invariant-based Program Repair
- arxiv url: http://arxiv.org/abs/2312.16652v1
- Date: Wed, 27 Dec 2023 17:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 18:27:55.947453
- Title: Invariant-based Program Repair
- Title(参考訳): 不変型プログラム修復
- Authors: Omar I. Al-Bataineh
- Abstract要約: 本稿では,プログラム不変量の概念に基づく汎用型自動プログラム修復(APR)フレームワークについて述べる。
本稿では,APRにおける不変量を利用したパフォーマンスバグの修復システムを構築することにより,APRにおける不変量を活用することの有用性を実証する。
- 参考スコア(独自算出の注目度): 1.7767466724342067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a formal general-purpose automated program repair (APR)
framework based on the concept of program invariants. In the presented repair
framework, the execution traces of a defected program are dynamically analyzed
to infer specifications $\varphi_{correct}$ and $\varphi_{violated}$, where
$\varphi_{correct}$ represents the set of likely invariants (good patterns)
required for a run to be successful and $\varphi_{violated}$ represents the set
of likely suspicious invariants (bad patterns) that result in the bug in the
defected program. These specifications are then refined using rigorous program
analysis techniques, which are also used to drive the repair process towards
feasible patches and assess the correctness of generated patches.We demonstrate
the usefulness of leveraging invariants in APR by developing an invariant-based
repair system for performance bugs. The initial analysis shows the
effectiveness of invariant-based APR in handling performance bugs by producing
patches that ensure program's efficiency increase without adversely impacting
its functionality.
- Abstract(参考訳): 本稿では,プログラム不変量の概念に基づく汎用型自動プログラム修復(APR)フレームワークについて述べる。
修正フレームワークでは、欠陥のあるプログラムの実行トレースを動的に解析して、$\varphi_{correct}$と$\varphi_{violated}$を推論し、ここで$\varphi_{correct}$は、実行に要する可能性のある不変値(よいパターン)の集合を表し、$\varphi_{violated}$は、欠陥のあるプログラムのバグを引き起こす可能性のある疑わしい不変値(悪いパターン)の集合を表す。
これらの仕様は、厳密なプログラム解析技術を用いて洗練され、また、修正プロセスを実行可能なパッチに向けて推進し、生成されたパッチの正しさを評価するためにも使われる。
最初の分析は、プログラムの効率が機能に悪影響を及ぼすことなく向上することを保証するパッチを生成することにより、パフォーマンスバグを処理するための不変ベースのAPRの有効性を示している。
関連論文リスト
- FastFixer: An Efficient and Effective Approach for Repairing Programming Assignments [21.848112758958543]
本稿では,FastFixerを提案する。
まず,必要なパッチと関連するコンテキストを生成する方法を学ぶことへのLLMの関心を高めることを目的とした,修復指向のファインチューニング戦略を提案する。
修復効率を考慮すると、FastFixerは自動回帰復号アルゴリズムと比較して16.67倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-10-11T10:17:02Z) - Towards Practical and Useful Automated Program Repair for Debugging [4.216808129651161]
PracAPRは統合開発環境(IDE)で動作する対話型修復システムである
PracAPRはテストスイートやプログラムの再実行を必要としない。
論文 参考訳(メタデータ) (2024-07-12T03:19:54Z) - On The Effectiveness of Dynamic Reduction Techniques in Automated Program Repair [1.7767466724342067]
本稿では,大規模バグ修正プログラムを効果的に処理するプログラム修復フレームワークについて述べる。
このフレームワークは、プログラムスライシングの形式でプログラムの削減を利用して、修正中のバグとは無関係にコードの一部を除去する。
広く使用されているDefects4Jデータセットに対する実験結果から,修復品質の劣化を伴わずに,大幅な性能向上が達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-23T21:35:07Z) - Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis [12.7034916462208]
自動プログラム修復(APR)は、人間の開発者のバグ修正プロセスを合理化する可能性から、大きな注目を集めている。
本稿ではGIANTREPAIRと呼ばれる革新的なAPR手法を紹介する。
この知見に基づいて、GIANTREPAIRはまず、LLM生成したパッチからパッチスケルトンを構築して、パッチ空間を閉じ込め、その後、特定のプログラムに適した高品質なパッチを生成する。
論文 参考訳(メタデータ) (2024-06-03T05:05:12Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
我々はSparse Increment Fine-Tuning (SIFT) という勾配に基づくスパース微調整アルゴリズムを提案する。
GLUE Benchmark や Instruction-tuning などのタスクで有効性を検証する。
論文 参考訳(メタデータ) (2023-12-19T06:06:30Z) - Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
不変表現学習(IRL)は、不変因果的特徴から環境から切り離されたラベルへの予測を促進する。
最近の理論的結果は、IRLによって回復されたいくつかの因果的特徴は、訓練環境ではドメイン不変のふりをするが、目に見えない領域では失敗する。
本研究では,RS-SCMに関する条件付き相互情報に基づく手法を開発し,その効果を巧みに補正する。
論文 参考訳(メタデータ) (2023-12-15T12:58:05Z) - Practical Program Repair via Preference-based Ensemble Strategy [28.176710503313895]
本稿では、異なるバグを修復するためのAPRツールのランク付けを行うためのPreference-based Ensemble Program repair framework(P-EPR)を提案する。
P-EPRは、修復パターンを利用した最初の非学習ベースのAPRアンサンブル法である。
実験の結果,P-EPRは柔軟性と有効性の両方において既存の戦略よりも優れていた。
論文 参考訳(メタデータ) (2023-09-15T07:23:04Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
新たな検索型パッチ生成フレームワーク(RAP-Gen)を提案する。
RAP-Gen 以前のバグ修正ペアのリストから取得した関連する修正パターンを明示的に活用する。
RAP-GenをJavaScriptのTFixベンチマークとJavaのCode RefinementとDefects4Jベンチマークの2つのプログラミング言語で評価する。
論文 参考訳(メタデータ) (2023-09-12T08:52:56Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Towards a Theoretical Understanding of the Robustness of Variational
Autoencoders [82.68133908421792]
敵攻撃や他の入力摂動に対する変分オートエンコーダ(VAE)の堅牢性を理解するために,我々は進出している。
確率モデルにおけるロバスト性のための新しい基準である$r$-robustnessを開発する。
遠心法を用いて訓練したVAEが、ロバストネスの指標でよく評価されていることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:22:29Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。