Some things are more CRINGE than others: Iterative Preference Optimization with the Pairwise Cringe Loss
- URL: http://arxiv.org/abs/2312.16682v2
- Date: Mon, 22 Apr 2024 22:51:32 GMT
- Title: Some things are more CRINGE than others: Iterative Preference Optimization with the Pairwise Cringe Loss
- Authors: Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, Jason Weston,
- Abstract summary: We show how an existing performant binary feedback method, the Cringe Loss, can be generalized to the pairwise preference setting.
We find it outperforms state-of-the-art preference optimization algorithms such as PPO and DPO on the AlpacaFarm benchmark.
- Score: 33.750604185218336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Practitioners commonly align large language models using pairwise preferences, i.e., given labels of the type response A is preferred to response B for a given input. Perhaps less commonly, methods have also been developed for binary feedback, i.e. training models given labels of type response A is good or bad. We show how an existing performant binary feedback method, the Cringe Loss (Adolphs et al., 2022), can be generalized to the pairwise preference setting using a simple soft margin extension. Pairwise Cringe Loss is straightforward to implement and efficient to train, and we find it outperforms state-of-the-art preference optimization algorithms such as PPO and DPO on the AlpacaFarm benchmark. We show that iterations of training of our model are important for improved results, and that we can generalize DPO to Iterative DPO in the same way.
Related papers
- VPO: Leveraging the Number of Votes in Preference Optimization [5.200545764106177]
We introduce a technique that leverages user voting data to better align with diverse subjective preferences.
We develop the Vote-based Preference Optimization framework, which incorporates the number of votes on both sides to distinguish between controversial and obvious generation pairs.
arXiv Detail & Related papers (2024-10-30T10:39:34Z) - TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees [14.84379332031731]
We introduce Tree Preference Optimization (TPO), that does not sample paired preference responses from the preference tree.
TPO formulates the language model alignment as a Preference List Ranking problem, where the policy can learn more effectively from a ranked preference list of responses.
arXiv Detail & Related papers (2024-10-10T22:22:05Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - Geometric-Averaged Preference Optimization for Soft Preference Labels [78.2746007085333]
Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic.
In this work, we introduce the distributional soft preference labels and improve Direct Preference Optimization (DPO) with a weighted geometric average of the LLM output likelihood in the loss function.
arXiv Detail & Related papers (2024-09-10T17:54:28Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Curriculum Direct Preference Optimization for Diffusion and Consistency Models [110.08057135882356]
We propose a novel and enhanced version of DPO based on curriculum learning for text-to-image generation.
Our approach, Curriculum DPO, is compared against state-of-the-art fine-tuning approaches on three benchmarks.
arXiv Detail & Related papers (2024-05-22T13:36:48Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
A common technique for aligning large language models (LLMs) relies on acquiring human preferences.
We propose a new axis that is based on eliciting preferences jointly over the instruction-response pairs.
We find that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - Direct Preference Optimization with an Offset [58.7977683502207]
Direct preference optimization (DPO) is a successful strategy for aligning large language models with human preferences.
We propose a generalization of DPO, termed DPO with an offset (ODPO), that does not treat every preference pair equally during fine-tuning.
arXiv Detail & Related papers (2024-02-16T10:55:38Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.