VPO: Leveraging the Number of Votes in Preference Optimization
- URL: http://arxiv.org/abs/2410.22891v1
- Date: Wed, 30 Oct 2024 10:39:34 GMT
- Title: VPO: Leveraging the Number of Votes in Preference Optimization
- Authors: Jae Hyeon Cho, Minkyung Park, Byung-Jun Lee,
- Abstract summary: We introduce a technique that leverages user voting data to better align with diverse subjective preferences.
We develop the Vote-based Preference Optimization framework, which incorporates the number of votes on both sides to distinguish between controversial and obvious generation pairs.
- Score: 5.200545764106177
- License:
- Abstract: Direct Preference Optimization (DPO) trains a language model using human preference data, bypassing the explicit reward modeling phase of Reinforcement Learning from Human Feedback (RLHF). By iterating over sentence pairs in a preference dataset, DPO enhances generation quality by increasing the likelihood of producing preferred sentences over less favored ones. Preference datasets are typically created by selecting preferred sentences through a voting process involving multiple individuals, as opinions can vary due to the subjective nature of human preferences. While the number of votes offers insight into whether a sentence pair is clearly preferable or controversial, current methods do not fully leverage this information. In this paper, we introduce a technique that leverages user voting data to better align with diverse subjective preferences. We employ the Bayesian Minimum Mean Square Error (Bayesian MMSE) estimator to model the probability that one generation is preferable to another. Using this estimated probability as a target, we develop the Vote-based Preference Optimization (VPO) framework, which incorporates the number of votes on both sides to distinguish between controversial and obvious generation pairs. We show that previous algorithms, such as DPO and Identity Preference Optimization (IPO), can be extended using the proposed framework, termed VDPO and VIPO. Our experiments demonstrate that these proposed algorithms outperform various existing methods, including their base algorithms.
Related papers
- ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees [14.84379332031731]
We introduce Tree Preference Optimization (TPO), that does not sample paired preference responses from the preference tree.
TPO formulates the language model alignment as a Preference List Ranking problem, where the policy can learn more effectively from a ranked preference list of responses.
arXiv Detail & Related papers (2024-10-10T22:22:05Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - Preference Optimization as Probabilistic Inference [21.95277469346728]
We propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback is available.
This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models.
arXiv Detail & Related papers (2024-10-05T14:04:03Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Direct Preference Optimization With Unobserved Preference Heterogeneity [16.91835461818937]
This paper presents a new method to align generative models with varied human preferences.
We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators.
Our algorithms leverage the simplicity of DPO while accommodating diverse preferences.
arXiv Detail & Related papers (2024-05-23T21:25:20Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
A common technique for aligning large language models (LLMs) relies on acquiring human preferences.
We propose a new axis that is based on eliciting preferences jointly over the instruction-response pairs.
We find that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
We propose a simple and intuitive off-policy preference optimization algorithm from an importance sampling view, which we call Maximum Preference Optimization (MPO)
MPO achieves the best of both worlds by combining the objectives of RLHF and IPO while being an off-policy algorithm.
arXiv Detail & Related papers (2023-12-27T06:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.