論文の概要: Review of Machine Learning Approaches for Diagnostics and Prognostics of
Industrial Systems Using Industrial Open Source Data
- arxiv url: http://arxiv.org/abs/2312.16810v1
- Date: Thu, 28 Dec 2023 04:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 17:47:25.042458
- Title: Review of Machine Learning Approaches for Diagnostics and Prognostics of
Industrial Systems Using Industrial Open Source Data
- Title(参考訳): 産業用オープンソースデータを用いた産業システムの診断・予後予測のための機械学習手法のレビュー
- Authors: Hanqi Su, Jay Lee
- Abstract要約: 本稿では,オープンソースのデータセットを用いた産業システムの診断・診断のための機械学習手法について概説する。
これは、複雑な産業タスクに取り組む上で、従来の機械学習とディープラーニングの両方が進化する役割を強調している。
- 参考スコア(独自算出の注目度): 0.38850145898707145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of Prognostics and Health Management (PHM), recent years have
witnessed a significant surge in the application of machine learning (ML).
Despite this growth, the field grapples with a lack of unified guidelines and
systematic approaches for effectively implementing these ML techniques and
comprehensive analysis regarding industrial open-source data across varied
scenarios. To address these gaps, this paper provides a comprehensive review of
machine learning approaches for diagnostics and prognostics of industrial
systems using open-source datasets from PHM Data Challenge Competitions held
between 2018 and 2023 by PHM Society and IEEE Reliability Society and
summarizes a unified ML framework. This review systematically categorizes and
scrutinizes the problems, challenges, methodologies, and advancements
demonstrated in these competitions, highlighting the evolving role of both
conventional machine learning and deep learning in tackling complex industrial
tasks related to detection, diagnosis, assessment, and prognosis. Moreover,
this paper delves into the common challenges in PHM data challenge competitions
by emphasizing both data-related and model-related issues and summarizes the
solutions that have been employed to address these challenges. Finally, we
identify key themes and potential directions for future research, providing
opportunities and prospects for ML further development in PHM.
- Abstract(参考訳): 近年、PHM(Prognostics and Health Management)の分野では、機械学習(ML)の適用が大幅に急増している。
この成長にもかかわらず、この分野は、これらのMLテクニックを効果的に実装するための統一されたガイドラインと体系的なアプローチの欠如と、さまざまなシナリオにわたる産業用オープンソースデータに関する包括的な分析に悩まされている。
これらのギャップに対処するため,本稿では,2018年から2023年にかけて開催されたphmデータチャレンジコンペティションのオープンソースデータセットを用いた産業システムの診断と予後に関する機械学習アプローチの包括的レビューを行い,統一mlフレームワークを要約する。
本稿では,これらのコンペで示された問題,課題,方法論,進歩を体系的に分類・精査し,検出,診断,評価,予後に関する複雑な産業課題に取り組む上で,従来の機械学習と深層学習の両方が果たす役割を明らかにする。
さらに,データ関連問題とモデル関連問題の両方を強調し,これらの課題に対処するためのソリューションを要約することによって,PHMデータチャレンジコンペティションにおける共通課題を考察する。
最後に、今後の研究の鍵となるテーマと潜在的方向性を特定し、PHMにおけるMLのさらなる発展の機会と展望を提供する。
関連論文リスト
- Insight Over Sight? Exploring the Vision-Knowledge Conflicts in Multimodal LLMs [55.74117540987519]
本稿では,マルチモーダル大言語モデル(MLLM)におけるコモンセンスレベルの視覚知識衝突の問題について考察する。
MLLMのコンフリクトのシミュレーションと評価を目的としたベンチマークを確立するため,人間のループ品質制御を付加した自動パイプラインを導入する。
各種モデルファミリーにおける9つの代表MLLMのコンフリクト分解能を評価し,テキストクエリに顕著なオーバー信頼度を求める。
論文 参考訳(メタデータ) (2024-10-10T17:31:17Z) - A Survey of AIOps for Failure Management in the Era of Large Language Models [60.59720351854515]
本稿では,LLM時代の障害管理のためのAIOps技術に関する包括的調査を行う。
これには、障害管理のためのAIOpsタスクの詳細な定義、AIOpsのデータソース、AIOpsに採用されているLLMベースのアプローチが含まれている。
論文 参考訳(メタデータ) (2024-06-17T05:13:24Z) - Data-driven Machinery Fault Detection: A Comprehensive Review [2.373572816573706]
タイムリーかつ正確に故障した機械信号を特定することは、産業応用において不可欠である。
データ駆動型機械故障診断(MFD)は、機械/深層学習アプローチに基づくソリューションであり、製造業で広く利用されている。
本調査では, 各種機械故障の検出・診断に, さまざまな種類の機械学習手法を用いて, 記事の総合的なレビューを行う。
論文 参考訳(メタデータ) (2024-05-29T07:50:47Z) - Large Language Models for Forecasting and Anomaly Detection: A
Systematic Literature Review [10.325003320290547]
本稿では,Large Language Models (LLMs) の予測・異常検出への応用について概説する。
LLMは、パターンを特定し、将来の事象を予測し、様々な領域にまたがる異常な振る舞いを検出するために、広範囲なデータセットを解析し分析する大きな可能性を示してきた。
このレビューでは、膨大な歴史的データセットへの依存、さまざまな文脈における一般化可能性の問題、モデル幻覚の現象など、より広範な採用と有効性を阻害するいくつかの重要な課題を取り上げている。
論文 参考訳(メタデータ) (2024-02-15T22:43:02Z) - Position Paper: Assessing Robustness, Privacy, and Fairness in Federated
Learning Integrated with Foundation Models [39.86957940261993]
ファンデーションモデル(FM)をフェデレートラーニング(FL)に統合することは、堅牢性、プライバシ、公正性の点で新しい問題をもたらす。
我々は、関連するトレードオフを分析し、この統合によってもたらされる脅威と問題を明らかにし、これらの課題をナビゲートするための一連の基準と戦略を提案する。
論文 参考訳(メタデータ) (2024-02-02T19:26:00Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
本稿では,Codeforcesにおける最近のプログラミング問題の解決において,大規模言語モデル(LLM)の推論能力を評価することを目的とする。
まず,問題の発生時間,難易度,遭遇したエラーの種類など,様々な側面を考慮して,GPT-4の望ましくないゼロショット性能を総合的に評価する。
驚くべきことに、GPT-4のTheThoughtivedのパフォーマンスは、2021年9月以降、あらゆる困難と種類の問題に対して一貫して問題が減少するような崖を経験している。
論文 参考訳(メタデータ) (2023-12-04T18:58:57Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - ChatGPT-Like Large-Scale Foundation Models for Prognostics and Health
Management: A Survey and Roadmaps [8.62142522782743]
産業生産と設備整備において,PHM技術は重要な役割を担っている。
ChatGPTやDALLE-Eといった大規模ファンデーションモデル(LSF-Model)は、AIがAI-2.0の新しい時代に入ることを象徴している。
本稿では,LSFモデルの主要なコンポーネントと最新の開発について,体系的に解説する。
論文 参考訳(メタデータ) (2023-05-10T21:37:44Z) - Machine Learning Towards Intelligent Systems: Applications, Challenges,
and Opportunities [8.68311678910946]
機械学習(ML)は、人間が大量のデータを処理するためのメカニズムを提供する。
このレビューは教育、医療、ネットワークセキュリティ、銀行と金融、ソーシャルメディアといった分野と応用に焦点を当てている。
論文 参考訳(メタデータ) (2021-01-11T01:32:15Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。