論文の概要: Machine Learning Towards Intelligent Systems: Applications, Challenges,
and Opportunities
- arxiv url: http://arxiv.org/abs/2101.03655v1
- Date: Mon, 11 Jan 2021 01:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 14:49:33.536120
- Title: Machine Learning Towards Intelligent Systems: Applications, Challenges,
and Opportunities
- Title(参考訳): インテリジェントシステムに向けた機械学習: 応用、挑戦、機会
- Authors: MohammadNoor Injadat, Abdallah Moubayed, Ali Bou Nassif, Abdallah
Shami
- Abstract要約: 機械学習(ML)は、人間が大量のデータを処理するためのメカニズムを提供する。
このレビューは教育、医療、ネットワークセキュリティ、銀行と金融、ソーシャルメディアといった分野と応用に焦点を当てている。
- 参考スコア(独自算出の注目度): 8.68311678910946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence and continued reliance on the Internet and related technologies
has resulted in the generation of large amounts of data that can be made
available for analyses. However, humans do not possess the cognitive
capabilities to understand such large amounts of data. Machine learning (ML)
provides a mechanism for humans to process large amounts of data, gain insights
about the behavior of the data, and make more informed decision based on the
resulting analysis. ML has applications in various fields. This review focuses
on some of the fields and applications such as education, healthcare, network
security, banking and finance, and social media. Within these fields, there are
multiple unique challenges that exist. However, ML can provide solutions to
these challenges, as well as create further research opportunities.
Accordingly, this work surveys some of the challenges facing the aforementioned
fields and presents some of the previous literature works that tackled them.
Moreover, it suggests several research opportunities that benefit from the use
of ML to address these challenges.
- Abstract(参考訳): インターネットおよび関連技術への出現と継続的な依存は、分析に利用できる大量のデータを生成する結果となった。
しかし、人間はそのような大量のデータを理解する認知能力を持っていない。
機械学習(ML)は、人間が大量のデータを処理し、データの振る舞いに関する洞察を得て、結果の分析に基づいてより深い意思決定を行うためのメカニズムを提供する。
MLは様々な分野で応用されている。
このレビューは教育、医療、ネットワークセキュリティ、銀行と金融、ソーシャルメディアといった分野と応用に焦点を当てている。
これらのフィールドには、複数のユニークな課題があります。
しかし、MLはこれらの課題に対する解決策を提供し、さらなる研究機会を生み出すことができる。
そこで,本研究では,上記の分野に直面する課題を調査し,それらに取り組む以前の文献の一部を提示する。
さらに、これらの課題に対処するためにMLを使用することから恩恵を受けるいくつかの研究機会も提案されている。
関連論文リスト
- Maintainability Challenges in ML: A Systematic Literature Review [5.669063174637433]
本研究の目的は,機械学習ワークフローのさまざまな段階における保守性課題を特定し,合成することである。
13,000件以上の論文を審査し、56件を質的に分析した。
論文 参考訳(メタデータ) (2024-08-17T13:24:15Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - Multi-agent Reinforcement Learning: A Comprehensive Survey [10.186029242664931]
マルチエージェントシステム(MAS)は、多くの現実世界のアプリケーションにおいて広く普及し、重要な存在である。
汎用性にもかかわらず、MASにおける知的意思決定エージェントの開発は、その効果的な実装にいくつかのオープンな課題を提起している。
本調査は,ゲーム理論(GT)と機械学習(ML)による基礎概念の研究に重点を置いて,これらの課題を考察する。
論文 参考訳(メタデータ) (2023-12-15T23:16:54Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Machine Learning Application Development: Practitioners' Insights [18.114724750441724]
MLアプリケーション開発の課題とベストプラクティスを理解することを目的とした調査について報告する。
80人の実践者から得られた結果を17の発見にまとめ、MLアプリケーション開発の課題とベストプラクティスを概説する。
報告された課題が、MLベースのアプリケーションのエンジニアリングプロセスと品質を改善するために調査すべきトピックについて、研究コミュニティに知らせてくれることを期待しています。
論文 参考訳(メタデータ) (2021-12-31T03:38:37Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
機械学習(ML)は、多種多様な成長を続ける一連のドメインに適用されている。
多くの場合、MLやデータサイエンスの専門知識を持たないドメインの専門家は、ML予測を使用してハイステークな意思決定を行うように求められます。
児童福祉スクリーニングにおけるMLユーザビリティの課題について,児童福祉スクリーニング者との一連のコラボレーションを通じて検討する。
論文 参考訳(メタデータ) (2021-03-02T22:50:45Z) - Principles and Practice of Explainable Machine Learning [12.47276164048813]
本稿では、特に機械学習(ML)とパターン認識モデルに関するデータ駆動手法に焦点を当てる。
メソッドの頻度と複雑さが増すにつれて、少なくともビジネスの利害関係者はモデルの欠点に懸念を抱いている。
我々は、業界実践者が説明可能な機械学習の分野をよりよく理解するための調査を実施した。
論文 参考訳(メタデータ) (2020-09-18T14:50:27Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。