Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis
- URL: http://arxiv.org/abs/2312.16812v2
- Date: Thu, 4 Apr 2024 22:31:18 GMT
- Title: Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis
- Authors: Zhan Li, Zhang Chen, Zhong Li, Yi Xu,
- Abstract summary: We propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation.
Our method achieves state-of-the-art rendering quality and speed, while retaining compact storage.
- Score: 28.455719771979876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel view synthesis of dynamic scenes has been an intriguing yet challenging problem. Despite recent advancements, simultaneously achieving high-resolution photorealistic results, real-time rendering, and compact storage remains a formidable task. To address these challenges, we propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation, composed of three pivotal components. First, we formulate expressive Spacetime Gaussians by enhancing 3D Gaussians with temporal opacity and parametric motion/rotation. This enables Spacetime Gaussians to capture static, dynamic, as well as transient content within a scene. Second, we introduce splatted feature rendering, which replaces spherical harmonics with neural features. These features facilitate the modeling of view- and time-dependent appearance while maintaining small size. Third, we leverage the guidance of training error and coarse depth to sample new Gaussians in areas that are challenging to converge with existing pipelines. Experiments on several established real-world datasets demonstrate that our method achieves state-of-the-art rendering quality and speed, while retaining compact storage. At 8K resolution, our lite-version model can render at 60 FPS on an Nvidia RTX 4090 GPU. Our code is available at https://github.com/oppo-us-research/SpacetimeGaussians.
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Fully Explicit Dynamic Gaussian Splatting [22.889981393105554]
3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations.
We introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence.
Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.
arXiv Detail & Related papers (2024-10-21T04:25:43Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained.
We propose Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting.
We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality.
arXiv Detail & Related papers (2024-06-26T19:37:07Z) - Superpoint Gaussian Splatting for Real-Time High-Fidelity Dynamic Scene Reconstruction [10.208558194785017]
We propose a novel framework named Superpoint Gaussian Splatting (SP-GS)
Our framework first reconstructs the scene and then clusters Gaussians with similar properties into superpoints.
Empowered by these superpoints, our method manages to extend 3D Gaussian splatting to dynamic scenes with only a slight increase in computational expense.
arXiv Detail & Related papers (2024-06-06T02:32:41Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
arXiv Detail & Related papers (2024-06-05T12:07:39Z) - BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting [8.380954205255104]
BAD-Gaussians is a novel approach to handle severe motion-blurred images with inaccurate camera poses.
Our method achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods.
arXiv Detail & Related papers (2024-03-18T14:43:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - 4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes [33.14021987166436]
We introduce 4DRotorGS, a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians.
As an explicit spatial-temporal representation, 4DRotorGS demonstrates powerful capabilities for modeling complicated dynamics and fine details.
We further implement our temporal slicing and acceleration framework, achieving real-time rendering speeds of up to 277 FPS on an 3090 GPU and 583 FPS on a 4090 GPU.
arXiv Detail & Related papers (2024-02-05T18:59:04Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.