Fully Explicit Dynamic Gaussian Splatting
- URL: http://arxiv.org/abs/2410.15629v2
- Date: Tue, 22 Oct 2024 12:02:29 GMT
- Title: Fully Explicit Dynamic Gaussian Splatting
- Authors: Junoh Lee, Chang-Yeon Won, Hyunjun Jung, Inhwan Bae, Hae-Gon Jeon,
- Abstract summary: 3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations.
We introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence.
Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.
- Score: 22.889981393105554
- License:
- Abstract: 3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations. Unfortunately, the benefits of the prior and representation do not involve novel view synthesis for dynamic motions. Ironically, this is because the main barrier is the reliance on them, which requires increasing training and rendering times to account for dynamic motions. In this paper, we design a Explicit 4D Gaussian Splatting(Ex4DGS). Our key idea is to firstly separate static and dynamic Gaussians during training, and to explicitly sample positions and rotations of the dynamic Gaussians at sparse timestamps. The sampled positions and rotations are then interpolated to represent both spatially and temporally continuous motions of objects in dynamic scenes as well as reducing computational cost. Additionally, we introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence. We initially train Ex4DGS using short timestamps and progressively extend timestamps, which makes it work well with a few point clouds. The point-backtracking is used to quantify the cumulative error of each Gaussian over time, enabling the detection and removal of erroneous Gaussians in dynamic scenes. Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.
Related papers
- Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained.
We propose Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting.
We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality.
arXiv Detail & Related papers (2024-06-26T19:37:07Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Superpoint Gaussian Splatting for Real-Time High-Fidelity Dynamic Scene Reconstruction [10.208558194785017]
We propose a novel framework named Superpoint Gaussian Splatting (SP-GS)
Our framework first reconstructs the scene and then clusters Gaussians with similar properties into superpoints.
Empowered by these superpoints, our method manages to extend 3D Gaussian splatting to dynamic scenes with only a slight increase in computational expense.
arXiv Detail & Related papers (2024-06-06T02:32:41Z) - 4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes [33.14021987166436]
We introduce 4DRotorGS, a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians.
As an explicit spatial-temporal representation, 4DRotorGS demonstrates powerful capabilities for modeling complicated dynamics and fine details.
We further implement our temporal slicing and acceleration framework, achieving real-time rendering speeds of up to 277 FPS on an 3090 GPU and 583 FPS on a 4090 GPU.
arXiv Detail & Related papers (2024-02-05T18:59:04Z) - Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis [28.455719771979876]
We propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation.
Our method achieves state-of-the-art rendering quality and speed, while retaining compact storage.
arXiv Detail & Related papers (2023-12-28T04:14:55Z) - DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes [57.12439406121721]
We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes.
For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene.
We then leverage a composite dynamic Gaussian graph to handle multiple moving objects.
We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency.
arXiv Detail & Related papers (2023-12-13T06:30:51Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.