Molecular Property Prediction Based on Graph Structure Learning
- URL: http://arxiv.org/abs/2312.16855v1
- Date: Thu, 28 Dec 2023 06:45:13 GMT
- Title: Molecular Property Prediction Based on Graph Structure Learning
- Authors: Bangyi Zhao, Weixia Xu, Jihong Guan, Shuigeng Zhou
- Abstract summary: We propose a graph structure learning (GSL) based MPP approach, called GSL-MPP.
Specifically, we first apply graph neural network (GNN) over molecular graphs to extract molecular representations.
With molecular fingerprints, we construct a molecular similarity graph (MSG)
- Score: 29.516479802217205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular property prediction (MPP) is a fundamental but challenging task in
the computer-aided drug discovery process. More and more recent works employ
different graph-based models for MPP, which have made considerable progress in
improving prediction performance. However, current models often ignore
relationships between molecules, which could be also helpful for MPP. For this
sake, in this paper we propose a graph structure learning (GSL) based MPP
approach, called GSL-MPP. Specifically, we first apply graph neural network
(GNN) over molecular graphs to extract molecular representations. Then, with
molecular fingerprints, we construct a molecular similarity graph (MSG).
Following that, we conduct graph structure learning on the MSG (i.e.,
molecule-level graph structure learning) to get the final molecular embeddings,
which are the results of fusing both GNN encoded molecular representations and
the relationships among molecules, i.e., combining both intra-molecule and
inter-molecule information. Finally, we use these molecular embeddings to
perform MPP. Extensive experiments on seven various benchmark datasets show
that our method could achieve state-of-the-art performance in most cases,
especially on classification tasks. Further visualization studies also
demonstrate the good molecular representations of our method.
Related papers
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
We introduce the textbf Structural Similarity Motif GNN (MSSM-GNN), a novel molecular graph representation learning method.
In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively.
We employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information.
arXiv Detail & Related papers (2024-09-13T06:59:10Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Conditional Graph Information Bottleneck for Molecular Relational
Learning [9.56625683182106]
We propose a novel relational learning framework, CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein.
Our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with.
arXiv Detail & Related papers (2023-04-29T01:17:43Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - MolGraph: a Python package for the implementation of molecular graphs
and graph neural networks with TensorFlow and Keras [51.92255321684027]
MolGraph is a graph neural network (GNN) package for molecular machine learning (ML)
MolGraph implements a chemistry module to accommodate the generation of small molecular graphs, which can be passed to a GNN algorithm to solve a molecular ML problem.
GNNs proved useful for molecular identification and improved interpretability of chromatographic retention time data.
arXiv Detail & Related papers (2022-08-21T18:37:41Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Graph-based Molecular Representation Learning [59.06193431883431]
Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science.
Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning.
arXiv Detail & Related papers (2022-07-08T17:43:20Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.