論文の概要: Block Pruning for Enhanced Efficiency in Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2312.16904v1
- Date: Thu, 28 Dec 2023 08:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 16:47:31.772529
- Title: Block Pruning for Enhanced Efficiency in Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークの効率向上のためのブロックプルーニング
- Authors: Cheng-En Wu, Azadeh Davoodi, Yu Hen Hu
- Abstract要約: 本稿では,エッジコンピューティング環境におけるディープニューラルネットワークにおけるブロックプルーニングを対象とする,ネットワークプルーニングに対する新しいアプローチを提案する。
提案手法は,プロキシメトリクスを利用する従来の手法とは異なっており,直接ブロック除去手法を用いて分類精度への影響を評価する。
- 参考スコア(独自算出の注目度): 7.110116320545541
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper presents a novel approach to network pruning, targeting block
pruning in deep neural networks for edge computing environments. Our method
diverges from traditional techniques that utilize proxy metrics, instead
employing a direct block removal strategy to assess the impact on
classification accuracy. This hands-on approach allows for an accurate
evaluation of each block's importance. We conducted extensive experiments on
CIFAR-10, CIFAR-100, and ImageNet datasets using ResNet architectures. Our
results demonstrate the efficacy of our method, particularly on large-scale
datasets like ImageNet with ResNet50, where it excelled in reducing model size
while retaining high accuracy, even when pruning a significant portion of the
network. The findings underscore our method's capability in maintaining an
optimal balance between model size and performance, especially in
resource-constrained edge computing scenarios.
- Abstract(参考訳): 本稿では,エッジコンピューティング環境におけるディープニューラルネットワークにおけるブロックプルーニングをターゲットとしたネットワークプルーニング手法を提案する。
提案手法は,プロキシメトリクスを利用した従来の手法と異なり,直接ブロック除去戦略を用いて分類精度への影響を評価する。
このハンズオンアプローチにより、各ブロックの重要性を正確に評価することができる。
resnetアーキテクチャを用いてcifar-10,cifar-100,imagenetデータセットの広範な実験を行った。
本研究では,特にimagenet with resnet50のような大規模データセットにおいて,ネットワークのかなりの部分を刈り取る場合でも,精度を維持しながらモデルサイズを小さくする効果を示した。
この結果は、特にリソース制約のあるエッジコンピューティングシナリオにおいて、モデルサイズとパフォーマンスの最適なバランスを維持するための手法の能力を強調する。
関連論文リスト
- A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Rewarded meta-pruning: Meta Learning with Rewards for Channel Pruning [19.978542231976636]
本稿では,ディープラーニングモデルにおける計算効率向上のためのパラメータとFLOPの削減手法を提案する。
本稿では,ネットワークの精度と計算効率のトレードオフを制御するために,精度と効率係数を導入する。
論文 参考訳(メタデータ) (2023-01-26T12:32:01Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Controlled Sparsity via Constrained Optimization or: How I Learned to
Stop Tuning Penalties and Love Constraints [81.46143788046892]
スパースラーニングを行う際には,スパーシティのレベルを制御するタスクに焦点をあてる。
スパーシリティを誘発する罰則に基づく既存の方法は、ペナルティファクターの高価な試行錯誤チューニングを含む。
本稿では,学習目標と所望のスパーシリティ目標によって,エンドツーエンドでスペーシフィケーションをガイドする制約付き定式化を提案する。
論文 参考訳(メタデータ) (2022-08-08T21:24:20Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
本研究は,チャネルサイズのマイクロサーチ空間を調べることにより,計算制約のある環境において効率的な手法を提案する。
チャネルサイズ最適化に際し、ネットワークの異なる接続層内の依存関係を抽出する自動アルゴリズムを設計する。
また、テスト精度と高い相関性を持ち、個々のネットワーク層を解析できる新しいメトリクスも導入する。
論文 参考訳(メタデータ) (2021-10-13T16:17:19Z) - BCNet: Searching for Network Width with Bilaterally Coupled Network [56.14248440683152]
この問題に対処するため、BCNet(Bilaterally Coupled Network)と呼ばれる新しいスーパーネットを導入する。
BCNetでは、各チャネルは高度に訓練され、同じ量のネットワーク幅を担っているため、ネットワーク幅をより正確に評価することができる。
提案手法は,他のベースライン手法と比較して,最先端あるいは競合的な性能を実現する。
論文 参考訳(メタデータ) (2021-05-21T18:54:03Z) - Compact CNN Structure Learning by Knowledge Distillation [34.36242082055978]
知識蒸留とカスタマイズ可能なブロックワイズ最適化を活用し、軽量なCNN構造を学習するフレームワークを提案する。
提案手法は,予測精度の向上を図りながら,アートネットワーク圧縮の状態を再現する。
特に,すでにコンパクトなネットワークであるMobileNet_v2では,モデル圧縮が最大2倍,モデル圧縮が5.2倍向上する。
論文 参考訳(メタデータ) (2021-04-19T10:34:22Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
大規模画像分類タスクにおいてトレーニングされたネットワークの重みからトレーニングサンプルのサブセットの影響を除去できることを示す。
そこで本研究では,混合プライバシー設定における「忘れ」という新しい概念を導入する。
提案手法は,モデル精度のトレードオフを伴わずに忘れることができることを示す。
論文 参考訳(メタデータ) (2020-12-24T19:34:56Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Layer-Net(L-Net)とChannel-Net(C-Net)と呼ばれる2つのコンパクトネットワークは、どのレイヤやフィルタ/チャネルが冗長であるかをインスタンス毎に予測する。
CIFAR-10データセットでは、LC-Netは11.9$times$ less floating-point Operations (FLOPs) となり、他の動的推論手法と比較して最大3.3%精度が向上する。
ImageNetデータセットでは、LC-Netは最大1.4$times$ FLOPsを減らし、Top-1の精度は他の方法よりも4.6%高い。
論文 参考訳(メタデータ) (2020-07-29T23:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。