論文の概要: Continual Learning in Medical Image Analysis: A Comprehensive Review of Recent Advancements and Future Prospects
- arxiv url: http://arxiv.org/abs/2312.17004v4
- Date: Thu, 10 Oct 2024 07:30:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:27:56.291019
- Title: Continual Learning in Medical Image Analysis: A Comprehensive Review of Recent Advancements and Future Prospects
- Title(参考訳): 医用画像解析における継続的な学習 : 最近の進歩と今後の展望
- Authors: Pratibha Kumari, Joohi Chauhan, Afshin Bozorgpour, Boqiang Huang, Reza Azad, Dorit Merhof,
- Abstract要約: 継続的学習は、統一的で持続可能な深層モデルを開発するための重要なアプローチとして現れてきた。
本稿では,医用画像解析に応用した継続的学習技術の現状を概観する。
- 参考スコア(独自算出の注目度): 5.417947115749931
- License:
- Abstract: Medical imaging analysis has witnessed remarkable advancements even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework such as continual learning scenarios, techniques, evaluation schemes, and metrics is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology...
- Abstract(参考訳): 近年の医療画像解析は、高度なディープラーニングアルゴリズムの急速な発展を契機に、人間のレベルのパフォーマンスをはるかに上回っている。
しかし、推論データセットが1回のトレーニングでモデルが見たものとわずかに異なる場合、モデルのパフォーマンスは大幅に損なわれる。
この状況では、古いデータと新しいデータの両方を使ってトレーニングプロセスを再開し、計算コストがかかり、人間の学習プロセスと一致せず、ストレージの制約やプライバシーの懸念を課す必要がある。
あるいは、持続的学習は、新しいクラス、タスク、および様々なアプリケーション領域の非定常環境におけるデータの漂流性を扱うために、統一的で持続可能な深層モデルを開発するための重要なアプローチとして現れてきた。
継続的な学習技術は、モデルを時間とともに適応し、知識を蓄積することを可能にする。
本稿では,医用画像解析に応用した継続的学習技術の現状を概観する。
本稿では, 破滅的忘れ, データドリフト, 安定性, 可塑性要件などのトピックについて, 既存研究の広範な調査を行う。
さらに,連続学習シナリオ,テクニック,評価スキーム,メトリクスなど,連続学習フレームワークの重要なコンポーネントについて,詳細な議論を行う。
継続的な学習技術には、リハーサル、正規化、アーキテクチャ、ハイブリッド戦略など、さまざまなカテゴリが含まれる。
放射線学や病理学などの様々な医学分野における連続的な学習カテゴリーの人気と適用性を評価する。
関連論文リスト
- A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - A Survey of Few-Shot Learning for Biomedical Time Series [3.845248204742053]
データ駆動型モデルは、臨床診断を支援し、患者のケアを改善する大きな可能性を秘めている。
ラベル付きデータの不足を克服する新たなアプローチは、人間のような能力でAIメソッドを拡張して、少数ショット学習と呼ばれる限られた例で新しいタスクを学ぶことだ。
本調査は,生物医学的時系列アプリケーションのための数ショット学習手法の総合的なレビューと比較を行う。
論文 参考訳(メタデータ) (2024-05-03T21:22:27Z) - Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation [3.2340528215722553]
連続的なニューラル情報検索の系統的なタスク定式化を示す。
包括的連続神経情報検索フレームワークを提案する。
経験的評価は,提案フレームワークが神経情報検索における破滅的な忘れ込みを効果的に防止できることを示唆している。
論文 参考訳(メタデータ) (2023-08-16T14:01:25Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
「生涯学習」システムには,1)継続的学習,2)伝達と適応,3)拡張性があります。
この一連のメトリクスは、様々な複雑な生涯学習システムの開発に役立てることができることを示す。
論文 参考訳(メタデータ) (2023-01-18T21:58:54Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Deep neural network models for computational histopathology: A survey [1.2891210250935146]
深層学習は がん組織像の分析と解釈において 主流の方法論選択となりました
本稿では,現在使われている最先端の深層学習手法について概説する。
私たちは、現在のディープラーニングアプローチにおける重要な課題と制限と、将来の研究への道のりを強調します。
論文 参考訳(メタデータ) (2019-12-28T01:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。