Continual Learning in Medical Image Analysis: A Comprehensive Review of Recent Advancements and Future Prospects
- URL: http://arxiv.org/abs/2312.17004v4
- Date: Thu, 10 Oct 2024 07:30:21 GMT
- Title: Continual Learning in Medical Image Analysis: A Comprehensive Review of Recent Advancements and Future Prospects
- Authors: Pratibha Kumari, Joohi Chauhan, Afshin Bozorgpour, Boqiang Huang, Reza Azad, Dorit Merhof,
- Abstract summary: Continual learning has emerged as a crucial approach for developing unified and sustainable deep models.
This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis.
- Score: 5.417947115749931
- License:
- Abstract: Medical imaging analysis has witnessed remarkable advancements even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework such as continual learning scenarios, techniques, evaluation schemes, and metrics is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology...
Related papers
- A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - A Survey of Few-Shot Learning for Biomedical Time Series [3.845248204742053]
Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care.
An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to learn new tasks with limited examples, called few-shot learning.
This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications.
arXiv Detail & Related papers (2024-05-03T21:22:27Z) - Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation [3.2340528215722553]
A systematic task formulation of continual neural information retrieval is presented.
A comprehensive continual neural information retrieval framework is proposed.
Empirical evaluations illustrate that the proposed framework can successfully prevent catastrophic forgetting in neural information retrieval.
arXiv Detail & Related papers (2023-08-16T14:01:25Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
"Lifelong Learning" systems are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability.
We show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems.
arXiv Detail & Related papers (2023-01-18T21:58:54Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Deep neural network models for computational histopathology: A survey [1.2891210250935146]
deep learning has become the mainstream methodological choice for analyzing and interpreting cancer histology images.
In this paper, we present a comprehensive review of state-of-the-art deep learning approaches that have been used.
We highlight critical challenges and limitations with current deep learning approaches, along with possible avenues for future research.
arXiv Detail & Related papers (2019-12-28T01:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.