Securing NextG Systems against Poisoning Attacks on Federated Learning:
A Game-Theoretic Solution
- URL: http://arxiv.org/abs/2312.17164v1
- Date: Thu, 28 Dec 2023 17:52:21 GMT
- Title: Securing NextG Systems against Poisoning Attacks on Federated Learning:
A Game-Theoretic Solution
- Authors: Yalin E. Sagduyu, Tugba Erpek, Yi Shi
- Abstract summary: This paper studies the poisoning attack and defense interactions in a federated learning (FL) system.
FL collectively trains a global model without the need for clients to exchange their data samples.
The presence of malicious clients introduces the risk of poisoning the training data to manipulate the global model through falsified local model exchanges.
- Score: 9.800359613640763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the poisoning attack and defense interactions in a
federated learning (FL) system, specifically in the context of wireless signal
classification using deep learning for next-generation (NextG) communications.
FL collectively trains a global model without the need for clients to exchange
their data samples. By leveraging geographically dispersed clients, the trained
global model can be used for incumbent user identification, facilitating
spectrum sharing. However, in this distributed learning system, the presence of
malicious clients introduces the risk of poisoning the training data to
manipulate the global model through falsified local model exchanges. To address
this challenge, a proactive defense mechanism is employed in this paper to make
informed decisions regarding the admission or rejection of clients
participating in FL systems. Consequently, the attack-defense interactions are
modeled as a game, centered around the underlying admission and poisoning
decisions. First, performance bounds are established, encompassing the best and
worst strategies for attackers and defenders. Subsequently, the attack and
defense utilities are characterized within the Nash equilibrium, where no
player can unilaterally improve its performance given the fixed strategies of
others. The results offer insights into novel operational modes that safeguard
FL systems against poisoning attacks by quantifying the performance of both
attacks and defenses in the context of NextG communications.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model.
Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness.
We present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL.
arXiv Detail & Related papers (2024-04-05T14:37:49Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Dynamic Defense Against Byzantine Poisoning Attacks in Federated
Learning [11.117880929232575]
Federated learning is vulnerable to Byzatine poisoning adversarial attacks.
We propose a dynamic aggregation operator that dynamically discards those adversarial clients.
The results show that the dynamic selection of the clients to aggregate enhances the performance of the global learning model.
arXiv Detail & Related papers (2020-07-29T18:02:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.