論文の概要: Improving Intrusion Detection with Domain-Invariant Representation
Learning in Latent Space
- arxiv url: http://arxiv.org/abs/2312.17300v1
- Date: Thu, 28 Dec 2023 17:24:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-02 15:14:48.871166
- Title: Improving Intrusion Detection with Domain-Invariant Representation
Learning in Latent Space
- Title(参考訳): 潜在空間におけるドメイン不変表現学習による侵入検出の改善
- Authors: Padmaksha Roy, Tyler Cody, Himanshu Singhal, Kevin Choi, Ming Jin
- Abstract要約: マルチタスク学習を用いた2相表現学習手法を提案する。
我々は、先行空間と潜時空間の間の相互情報の最小化により、潜時空間を解き放つ。
モデルの有効性を複数のサイバーセキュリティデータセットで評価する。
- 参考スコア(独自算出の注目度): 5.225961235069437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization focuses on leveraging knowledge from multiple related
domains with ample training data and labels to enhance inference on unseen
in-distribution (IN) and out-of-distribution (OOD) domains. In our study, we
introduce a two-phase representation learning technique using multi-task
learning. This approach aims to cultivate a latent space from features spanning
multiple domains, encompassing both native and cross-domains, to amplify
generalization to IN and OOD territories. Additionally, we attempt to
disentangle the latent space by minimizing the mutual information between the
prior and latent space, effectively de-correlating spurious feature
correlations. Collectively, the joint optimization will facilitate
domain-invariant feature learning. We assess the model's efficacy across
multiple cybersecurity datasets, using standard classification metrics on both
unseen IN and OOD sets, and juxtapose the results with contemporary domain
generalization methods.
- Abstract(参考訳): ドメインの一般化は、多くのトレーニングデータとラベルを持つ複数の関連ドメインからの知識を活用することに焦点を当て、未発見のin-distribution(in)とout-of-distribution(ood)ドメインの推論を強化する。
本研究では,マルチタスク学習を用いた二相表現学習手法を提案する。
このアプローチは、ネイティブドメインとクロスドメインの両方を含む複数のドメインにまたがる機能から潜伏空間を育み、INおよびOOD領域への一般化を促進することを目的としている。
さらに,先行空間と潜在空間の相互情報を最小化し,スプリアス特徴相関を効果的に解消することで,潜在空間の絡み合いを解消しようとする。
共同最適化により、ドメイン不変の機能学習が容易になる。
複数のサイバーセキュリティデータセットにまたがるモデルの有効性を評価するため、未確認のINおよびOODセットの標準分類基準を用いて、同時代のドメイン一般化手法を用いて結果を集計する。
関連論文リスト
- Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
マルチソースUnsupervised Domain Adaptationはラベル付きデータを持つ複数のソースドメインからラベル付きターゲットドメインに知識を転送する。
異なるドメインとターゲットドメイン内のノイズの多い擬似ラベル間の分散の相違は、どちらもパフォーマンスのボトルネックにつながる。
本稿では,意識駆動型ドメイン融合(ADNT)と雑音耐性学習(ADNT)を統合し,上記の2つの問題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-05T01:08:41Z) - Adaptive Hierarchical Dual Consistency for Semi-Supervised Left Atrium
Segmentation on Cross-Domain Data [8.645556125521246]
ドメイン間データに対する半教師付き学習の一般化は、モデルの堅牢性を改善するために重要である。
AHDCはBAI(Bidirectional Adversarial Inference Module)とHDC(Hierarchical Dual Consistency Learning Module)から構成されている。
今回提案したAHDCは, 異なる中心部からの3D遅延心筋MR(LGE-CMR)データセットと3DCTデータセットを用いて, 評価を行った。
論文 参考訳(メタデータ) (2021-09-17T02:15:10Z) - Variational Attention: Propagating Domain-Specific Knowledge for
Multi-Domain Learning in Crowd Counting [75.80116276369694]
群集カウントでは, 激しいラベル付けの問題により, 新しい大規模データセットを収集する難易度が知覚される。
マルチドメイン共同学習を活用し,DKPNet(Domain-specific Knowledge Propagating Network)を提案する。
主に、異なるドメインに対する注意分布を明示的にモデル化する、新しい変動注意法(VA)技術を提案する。
論文 参考訳(メタデータ) (2021-08-18T08:06:37Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
オープンセットドメイン適応(OSDA)は、ターゲットドメインに未知のクラスが存在することを前提としている。
既存の最先端手法は、より大きなドメインギャップが存在する場合、かなりの性能低下を被ることを示す。
我々は、より大きなドメインギャップに特に対処するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-08T14:20:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。