PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model
- URL: http://arxiv.org/abs/2312.17329v3
- Date: Mon, 9 Sep 2024 03:36:47 GMT
- Title: PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model
- Authors: Malik Hassanaly, Peter J. Weddle, Ryan N. King, Subhayan De, Alireza Doostan, Corey R. Randall, Eric J. Dufek, Andrew M. Colclasure, Kandler Smith,
- Abstract summary: This manuscript is the first of a two-part series that introduces PINN surrogates of Li-ion battery models for parameter inference.
A multi-fidelity hierarchical training, where several neural nets are trained with multiple physics-loss fidelities is shown to significantly improve the surrogate accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To plan and optimize energy storage demands that account for Li-ion battery aging dynamics, techniques need to be developed to diagnose battery internal states accurately and rapidly. This study seeks to reduce the computational resources needed to determine a battery's internal states by replacing physics-based Li-ion battery models -- such as the single-particle model (SPM) and the pseudo-2D (P2D) model -- with a physics-informed neural network (PINN) surrogate. The surrogate model makes high-throughput techniques, such as Bayesian calibration, tractable to determine battery internal parameters from voltage responses. This manuscript is the first of a two-part series that introduces PINN surrogates of Li-ion battery models for parameter inference (i.e., state-of-health diagnostics). In this first part, a method is presented for constructing a PINN surrogate of the SPM. A multi-fidelity hierarchical training, where several neural nets are trained with multiple physics-loss fidelities is shown to significantly improve the surrogate accuracy when only training on the governing equation residuals. The implementation is made available in a companion repository (https://github.com/NREL/pinnstripes). The techniques used to develop a PINN surrogate of the SPM are extended in Part II for the PINN surrogate for the P2D battery model, and explore the Bayesian calibration capabilities of both surrogates.
Related papers
- Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model [0.0]
A physics-informed neural network (PINN) is developed as a surrogate for the pseudo-2D (P2D) battery model calibration.
A parameter inference study highlights the ability to use these PINNs to calibrate scaling parameters for the cathode Li diffusion and the anode exchange current density.
arXiv Detail & Related papers (2023-12-28T19:28:23Z) - Physics-informed machine learning of redox flow battery based on a
two-dimensional unit cell model [1.8147447763965252]
We present a physics-informed neural network (PINN) approach for predicting the performance of an all-vanadium redox flow battery.
Our numerical results show that the PINN is able to predict cell voltage correctly, but the prediction of potentials shows a constant-like shift.
arXiv Detail & Related papers (2023-05-31T22:06:30Z) - Physics-Informed Neural Networks for Prognostics and Health Management
of Lithium-Ion Batteries [8.929862063890974]
We propose a model fusion scheme based on Physics-Informed Neural Network (PINN)
It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion batteries.
The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework.
arXiv Detail & Related papers (2023-01-02T17:51:23Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Inferring electrochemical performance and parameters of Li-ion batteries
based on deep operator networks [1.8369974607582584]
The Li-ion battery is a complex physicochemical system that generally takes applied current as input and terminal voltage as output.
We propose to build a data-driven surrogate for a battery system while incorporating the underlying physics as constraints.
arXiv Detail & Related papers (2022-05-06T23:55:48Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Modified Gaussian Process Regression Models for Cyclic Capacity
Prediction of Lithium-ion Batteries [5.663192900261267]
This paper presents the development of machine learning-enabled data-driven models for capacity predictions for lithium-ion batteries.
The developed models are validated compared on the Nickel Manganese Oxide (MCN) lithium-ion batteries with various cycling patterns.
arXiv Detail & Related papers (2020-12-31T19:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.