On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
- URL: http://arxiv.org/abs/2503.22396v1
- Date: Fri, 28 Mar 2025 13:06:41 GMT
- Title: On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
- Authors: Josu Yeregui, Iker Lopetegi, Sergio Fernandez, Erik Garayalde, Unai Iraola,
- Abstract summary: The proposed approach significantly reduces computational costs, making it suitable for real-time implementation on battery management systems.<n>We have been able to effectively estimate relevant electrochemical parameters with operating data.<n>The methodology is experimentally validated in a Raspberry Pi device using data from a standard charge profile.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a novel physical parameter estimation framework for on-site model characterization, using a two-phase modelling strategy with Physics-Informed Neural Networks (PINNs) and transfer learning (TL). In the first phase, a PINN is trained using only the physical principles of the single particle model (SPM) equations. In the second phase, the majority of the PINN parameters are frozen, while critical electrochemical parameters are set as trainable and adjusted using real-world voltage profile data. The proposed approach significantly reduces computational costs, making it suitable for real-time implementation on Battery Management Systems (BMS). Additionally, as the initial phase does not require field data, the model is easy to deploy with minimal setup requirements. With the proposed methodology, we have been able to effectively estimate relevant electrochemical parameters with operating data. This has been proved estimating diffusivities and active material volume fractions with charge data in different degradation conditions. The methodology is experimentally validated in a Raspberry Pi device using data from a standard charge profile with a 3.89\% relative accuracy estimating the active material volume fractions of a NMC cell with 82.09\% of its nominal capacity.
Related papers
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.
FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.
We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Automatic Characterization of Fluxonium Superconducting Qubits Parameters with Deep Transfer Learning [0.5932428354861273]
In solid state systems, the parameters of individual qubits vary across the entire system.<n>Recent developed superconducting qubits, such as fluxonium or 0-pi qubits, offer improved fidelity operations but exhibit a more complex physical and spectral structure.<n>We propose a machine learning (ML)based methodology for the automatic and accurate characterization of fluxonium qubit parameters.
arXiv Detail & Related papers (2025-03-15T11:51:16Z) - Optimizing Hyperparameters for Quantum Data Re-Uploaders in Calorimetric Particle Identification [11.099632666738177]
We present an application of a single-qubit Data Re-Uploading (QRU) quantum model for particle classification in calorimetric experiments.<n>This model requires minimal qubits while delivering strong classification performance.
arXiv Detail & Related papers (2024-12-16T23:10:00Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
parameterizations are a major source of systematic errors and large uncertainties in climate projections.
Deep learning (DL)-based parameterizations, trained on data from computationally expensive short, high-resolution simulations, have shown great promise for improving climate models.
We propose an efficient supervised learning framework for DL-based parameterizations that leads to physically consistent models.
arXiv Detail & Related papers (2024-06-06T10:02:49Z) - Machine learning Hubbard parameters with equivariant neural networks [0.0]
We present a machine learning model based on equivariant neural networks.<n>We target here the prediction of Hubbard parameters computed self-consistently with iterative linear-response calculations.<n>Our model achieves mean absolute relative errors of 3% and 5% for Hubbard $U$ and $V$ parameters, respectively.
arXiv Detail & Related papers (2024-06-04T16:21:24Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
We propose PINNs for the calibration of models from full-field displacement and global force data in a realistic regime.
We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data.
arXiv Detail & Related papers (2022-12-15T11:01:32Z) - Local manifold learning and its link to domain-based physics knowledge [53.15471241298841]
In many reacting flow systems, the thermo-chemical state-space is assumed to evolve close to a low-dimensional manifold (LDM)
We show that PCA applied in local clusters of data (local PCA) is capable of detecting the intrinsic parameterization of the thermo-chemical state-space.
arXiv Detail & Related papers (2022-07-01T09:06:25Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.