論文の概要: Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning
- arxiv url: http://arxiv.org/abs/2312.17493v2
- Date: Sun, 2 Jun 2024 06:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 19:52:07.771205
- Title: Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning
- Title(参考訳): フェデレート学習を用いた大規模言語モデルの個人差分低ランク適応
- Authors: Xiao-Yang Liu, Rongyi Zhu, Daochen Zha, Jiechao Gao, Shan Zhong, Matt White, Meikang Qiu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)に適した新しいフェデレーション学習アルゴリズムDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
- 参考スコア(独自算出の注目度): 32.52811740662061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.
- Abstract(参考訳): 大型言語モデル(LLM)の関心の高まりと応用は、金融や医学などの特定の応用に適合するように、これらのモデルを微調整するきっかけとなった。
しかし、データプライバシに関する懸念は、特に複数の利害関係者が機密データを使用してLLMを協調的に強化しようとするときに現れている。
このシナリオでは、フェデレートされた学習が自然な選択となり、中央サーバに生データを公開することなく、分散化された微調整が可能になる。
そこで本研究では,LLMにおけるデータプライバシを,実践的なフェデレーション学習アプローチを通じて微調整し,複数のパーティからのセキュアなコントリビューションによるLLMの強化を実現する方法について検討する。
しかし、課題が生じる。
1)生データ露出を避けつつも、モデル出力からセンシティブな情報を推測するリスクがある。
2) LLM の連合学習は, 通信オーバーヘッドが顕著である。
これらの課題に対処するために,本論文では,LLMに適した新しいフェデレーション学習アルゴリズムであるDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
さらに、DP-LoRAは、低ランク適応による通信効率を最適化し、分散トレーニング中の更新重みの伝達を最小化する。
様々なLCMを用いた医療、財務、一般データセットにわたる実験結果から、DP-LoRAは通信オーバーヘッドを最小限にしつつ、厳格なプライバシー制約を効果的に保証することを示した。
関連論文リスト
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
現実世界のNLPアプリケーションでは、Large Language Models (LLMs) は巨大なデータセットの広範なトレーニングのために、有望なソリューションを提供する。
LLKDは、教師と学生の両方の信号を組み込んだ適応的なサンプル選択法である。
総合的な実験により,LLKDは高いデータ効率で,様々なデータセットで優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-11-12T18:57:59Z) - Unveiling the Vulnerability of Private Fine-Tuning in Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced Attack [20.727726850786386]
BiSRは、スプリットラーニング(SL)の前方および後方伝播プロセスの両方をターゲットにした最初のデータ再構成攻撃である。
SLの前方および後方伝播過程を標的とした最初のデータ再構成攻撃(DRA)であるBiSRを提案する。
論文 参考訳(メタデータ) (2024-09-02T06:01:20Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
本論文は,フェデレートラーニング(FL)における大規模言語モデル(LLM)の効率的な学習手法の開発を目的とする。
まず,ローランク適応(LoRA)を用いて局所モデルトレーニングの計算負荷を削減する。
第2に、コミュニケーションコストを大幅に削減するために、トレーニング全体を通してスパース更新を通信します。
論文 参考訳(メタデータ) (2024-07-30T05:24:08Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
フェデレートされたドメイン固有の知識伝達フレームワークを紹介する。
クライアントのデータプライバシを保護しながら、LLMからSLMへのドメイン固有の知識転送を可能にする。
提案されたFDKTフレームワークは、プライバシー予算が10未満のSLMのタスクパフォーマンスを約5%改善する。
論文 参考訳(メタデータ) (2024-05-23T06:14:35Z) - Locally Differentially Private In-Context Learning [8.659575019965152]
大規模な事前学習言語モデル(LLM)は、驚くべきインコンテキスト学習(ICL)能力を示している。
本稿では,文脈内学習(LDP-ICL)の局所的差分的フレームワークを提案する。
変圧器の勾配勾配降下による文脈内学習のメカニズムを考慮し,LDP-ICLにおけるプライバシとユーティリティのトレードオフ分析を行う。
論文 参考訳(メタデータ) (2024-05-07T06:05:43Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - FATE-LLM: A Industrial Grade Federated Learning Framework for Large
Language Models [18.65547577691255]
大規模言語モデル(LLM)は近年,様々なタスクにおいて顕著なパフォーマンスを示している。
FATE-LLMは、大規模言語モデルのための産業レベルの連邦学習フレームワークである。
我々は、FedLLMの研究を促進するためにFATE-LLMのコードをリリースし、幅広い産業応用を可能にする。
論文 参考訳(メタデータ) (2023-10-16T04:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。