論文の概要: Personalized Wireless Federated Learning for Large Language Models
- arxiv url: http://arxiv.org/abs/2404.13238v1
- Date: Sat, 20 Apr 2024 02:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:49:10.323707
- Title: Personalized Wireless Federated Learning for Large Language Models
- Title(参考訳): 大規模言語モデルのためのパーソナライズされた無線フェデレーション学習
- Authors: Feibo Jiang, Li Dong, Siwei Tu, Yubo Peng, Kezhi Wang, Kun Yang, Cunhua Pan, Dusit Niyato,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
- 参考スコア(独自算出の注目度): 75.22457544349668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their deployment in wireless networks still face challenges, i.e., a lack of privacy and security protection mechanisms. Federated Learning (FL) has emerged as a promising approach to address these challenges. Yet, it suffers from issues including inefficient handling with big and heterogeneous data, resource-intensive training, and high communication overhead. To tackle these issues, we first compare different learning stages and their features of LLMs in wireless networks. Next, we introduce two personalized wireless federated fine-tuning methods with low communication overhead, i.e., (1) Personalized Federated Instruction Tuning (PFIT), which employs reinforcement learning to fine-tune local LLMs with diverse reward models to achieve personalization; (2) Personalized Federated Task Tuning (PFTT), which can leverage global adapters and local Low-Rank Adaptations (LoRA) to collaboratively fine-tune local LLMs, where the local LoRAs can be applied to achieve personalization without aggregation. Finally, we perform simulations to demonstrate the effectiveness of the proposed two methods and comprehensively discuss open issues.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
しかしながら、無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
フェデレートラーニング(FL)は、これらの課題に対処するための有望なアプローチとして登場した。
しかし、大きなデータと不均一なデータの非効率な処理、リソース集約的なトレーニング、高い通信オーバーヘッドといった問題に悩まされている。
これらの課題に対処するために、まず、無線ネットワークにおけるLLMの異なる学習段階と特徴を比較した。
次に、コミュニケーションオーバーヘッドの少ない2つのパーソナライズされたワイヤレスフェデレーション微調整手法、すなわち、強化学習を利用してパーソナライズを実現するローカルLLMをパーソナライズするパーソナライズドフェデレーション微調整法(PFIT)、グローバルアダプタとローカルローランド適応(LoRA)を活用してローカルLoRAをアグリゲーションなしでパーソナライズできるパーソナライズされたフェデレーションタスク微調整法(PFTT)を導入する。
最後に,提案手法の有効性を実証するためにシミュレーションを行い,オープンな問題を包括的に議論する。
関連論文リスト
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
本論文は,フェデレートラーニング(FL)における大規模言語モデル(LLM)の効率的な学習手法の開発を目的とする。
まず,ローランク適応(LoRA)を用いて局所モデルトレーニングの計算負荷を削減する。
第2に、コミュニケーションコストを大幅に削減するために、トレーニング全体を通してスパース更新を通信します。
論文 参考訳(メタデータ) (2024-07-30T05:24:08Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
大きな言語モデル(LLM)は、言語理解と人間に似たテキスト生成に革命をもたらした。
本稿では,6G(第6世代)無線通信技術におけるLCMの電力利用技術について検討する。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-22T05:19:51Z) - Communication-Efficient Personalized Federated Learning for
Speech-to-Text Tasks [66.78640306687227]
プライバシー保護と法的規制を満たすために、連邦学習(FL)は、音声テキスト(S2T)システムのトレーニングにおいて大きな注目を集めている。
S2Tタスクで一般的に使用されるFLアプローチ(textscFedAvg)は、通常、広範な通信オーバーヘッドに悩まされる。
我々は、クライアント側チューニングとサーバとのインタラクションのための軽量なLoRAモジュールであるtextscFedLoRA と、$k$-near を備えたグローバルモデルである textscFedMem を導入したパーソナライズされたS2Tフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T15:39:38Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
本稿では,大規模言語モデル(LLM)に適した新しいフェデレーション学習アルゴリズムDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
論文 参考訳(メタデータ) (2023-12-29T06:50:38Z) - FedMS: Federated Learning with Mixture of Sparsely Activated Foundations
Models [11.362085734837217]
我々はFedMSと呼ばれる新しい2段階のフェデレーション学習アルゴリズムを提案する。
グローバルエキスパートは第一段階で訓練され、ローカルエキスパートは第二段階で訓練され、より良いパーソナライズを提供する。
我々はFedMSの有効性を検証するために広範囲な実験を行い、その結果、FedMSは他のSOTAベースラインを55.25%まで上回る結果となった。
論文 参考訳(メタデータ) (2023-12-26T07:40:26Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。