Generative Inverse Design of Metamaterials with Functional Responses by Interpretable Learning
- URL: http://arxiv.org/abs/2401.00003v6
- Date: Wed, 30 Oct 2024 20:38:21 GMT
- Title: Generative Inverse Design of Metamaterials with Functional Responses by Interpretable Learning
- Authors: Wei "Wayne" Chen, Rachel Sun, Doksoo Lee, Carlos M. Portela, Wei Chen,
- Abstract summary: We propose the Random-forest-based Interpretable Generative Inverse Design (RIGID)
RIGID is a single-shot inverse design method for fast generation of metamaterial designs with on-demand functional behaviors.
We validate RIGID on acoustic and optical metamaterial design problems, each with fewer than 250 training samples.
- Score: 3.931881794708454
- License:
- Abstract: Metamaterials with functional responses can exhibit varying properties under different conditions (e.g., wave-based responses or deformation-induced property variation). This work addresses the rapid inverse design of such metamaterials to meet target qualitative functional behaviors, a challenge due to its intractability and non-unique solutions. Unlike data-intensive and non-interpretable deep-learning-based methods, we propose the Random-forest-based Interpretable Generative Inverse Design (RIGID), a single-shot inverse design method for fast generation of metamaterial designs with on-demand functional behaviors. RIGID leverages the interpretability of a random forest-based "design$\rightarrow$response" forward model, eliminating the need for a more complex "response$\rightarrow$design" inverse model. Based on the likelihood of target satisfaction derived from the trained random forest, one can sample a desired number of design solutions using Markov chain Monte Carlo methods. We validate RIGID on acoustic and optical metamaterial design problems, each with fewer than 250 training samples. Compared to the genetic algorithm-based design generation approach, RIGID generates satisfactory solutions that cover a broader range of the design space, allowing for better consideration of additional figures of merit beyond target satisfaction. This work offers a new perspective on solving on-demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design under small data constraints.
Related papers
- The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Deep learning for size-agnostic inverse design of random-network 3D
printed mechanical metamaterials [11.097689467173666]
Practical applications of mechanical metamaterials often involve solving inverse problems where the objective is to find the (multiple) microarchitectures that give rise to a given set of properties.
We propose a modular approach titled 'Deep-DRAM' that combines four decoupled models, including two deep learning models (DLM), a deep generative model (DGM) based on conditional variational autoencoders (CVAE) and direct finite element (FE) simulations.
arXiv Detail & Related papers (2022-12-22T21:32:02Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Mixed Integer Neural Inverse Design [27.43272793942742]
piecewise linear property, very common in everyday neural networks, allows for an inverse design formulation based on mixed-integer linear programming.
Our mixed-integer inverse design uncovers globally optimal or near optimal solutions in a principled manner.
arXiv Detail & Related papers (2021-09-27T09:19:41Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Scalable Gaussian Processes for Data-Driven Design using Big Data with
Categorical Factors [14.337297795182181]
Gaussian processes (GP) have difficulties in accommodating big datasets, categorical inputs, and multiple responses.
We propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously.
Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism.
arXiv Detail & Related papers (2021-06-26T02:17:23Z) - Robust Reconfigurable Intelligent Surfaces via Invariant Risk and Causal
Representations [55.50218493466906]
In this paper, the problem of robust reconfigurable intelligent surface (RIS) system design under changes in data distributions is investigated.
Using the notion of invariant risk minimization (IRM), an invariant causal representation across multiple environments is used such that the predictor is simultaneously optimal for each environment.
A neural network-based solution is adopted to seek the predictor and its performance is validated via simulations against an empirical risk minimization-based design.
arXiv Detail & Related papers (2021-05-04T21:36:31Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.