論文の概要: Hybrid Modeling Design Patterns
- arxiv url: http://arxiv.org/abs/2401.00033v1
- Date: Fri, 29 Dec 2023 15:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 19:18:58.560684
- Title: Hybrid Modeling Design Patterns
- Title(参考訳): ハイブリッドモデリングデザインパターン
- Authors: Maja Rudolph, Stefan Kurz, Barbara Rakitsch
- Abstract要約: データ駆動コンポーネントとドメイン知識をハイブリッドアプローチに組み合わせるための青写真として機能する4つの基本パターンを提供します。
また、基本パターンとより複雑なハイブリッドモデルの組み合わせを規定する2つの構成パターンも提示する。
それぞれのデザインパターンは、気候モデリング、工学、物理学といった応用分野の典型的なユースケースによって説明されます。
- 参考スコア(独自算出の注目度): 10.266928164137635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Design patterns provide a systematic way to convey solutions to recurring
modeling challenges. This paper introduces design patterns for hybrid modeling,
an approach that combines modeling based on first principles with data-driven
modeling techniques. While both approaches have complementary advantages there
are often multiple ways to combine them into a hybrid model, and the
appropriate solution will depend on the problem at hand. In this paper, we
provide four base patterns that can serve as blueprints for combining
data-driven components with domain knowledge into a hybrid approach. In
addition, we also present two composition patterns that govern the combination
of the base patterns into more complex hybrid models. Each design pattern is
illustrated by typical use cases from application areas such as climate
modeling, engineering, and physics.
- Abstract(参考訳): デザインパターンは、繰り返し発生するモデリング課題にソリューションを伝達する体系的な方法を提供する。
本稿では、第一原理に基づくモデリングとデータ駆動モデリング技術を組み合わせたハイブリッドモデリングの設計パターンを紹介する。
どちらのアプローチも相補的な利点がある一方で、それらをハイブリッドモデルに組み合わせる方法は多々あり、適切な解決策は目前にある問題に依存します。
本稿では、データ駆動コンポーネントとドメイン知識をハイブリッドアプローチに組み合わせるための青写真として機能する4つの基本パターンを提案する。
さらに,基本パターンとより複雑なハイブリッドモデルの組み合わせを規定する2つの構成パターンも提示する。
各デザインパターンは、気候モデリング、工学、物理学といった応用分野の典型的なユースケースによって示される。
関連論文リスト
- Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
我々は、通常、どのモデルが組み合わされるかについて議論し、様々な混合方程式に基づくモデルを表現することができるモデルインターフェースを提案する。
本稿では,2つの組み合わせモデル間の汎用的な接続を,容易に解釈可能な方法で記述できる新しいワイルドカードトポロジーを提案する。
本稿では、2つのモデル間の異なる接続トポロジを学習し、解釈し、比較する。
論文 参考訳(メタデータ) (2024-06-12T11:17:11Z) - FusionBench: A Comprehensive Benchmark of Deep Model Fusion [78.80920533793595]
ディープモデル融合(Deep Model fusion)とは、複数のディープニューラルネットワークの予測やパラメータを単一のモデルに統合する手法である。
FusionBenchは、ディープモデル融合に特化した最初の包括的なベンチマークである。
論文 参考訳(メタデータ) (2024-06-05T13:54:28Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - Model Synthesis for Zero-Shot Model Attribution [26.835046772924258]
生成モデルは、芸術、デザイン、人間とコンピュータの相互作用などの様々な分野を形作っている。
実世界の生成モデルの指紋パターンを模倣した多数の合成モデルを生成するモデル合成手法を提案する。
実験により, この指紋抽出装置は, 合成モデルのみを訓練し, 様々な実世界の生成モデルに対して, 印象的なゼロショットの一般化を実現することができた。
論文 参考訳(メタデータ) (2023-07-29T13:00:42Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - An Ample Approach to Data and Modeling [1.0152838128195467]
さまざまな分野の概念とメソッドを統合するモデルの構築方法をモデル化するためのフレームワークについて説明する。
参照M*メタモデルフレームワークは、厳密な同値関係の観点からデータセットと各モデルの関連付けに批判的に依存する。
開発されたフレームワークがデータクラスタリング、複雑性、共同研究、ディープラーニング、クリエイティビティに関する洞察を提供する方法について、いくつかの考察がなされている。
論文 参考訳(メタデータ) (2021-10-05T01:26:09Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
ハイブリッドなモデリングプロセスは、より快適で、システム知識を必要とせず、第一原理に基づくモデリングに比べてエラーの少ないことが示される。
結果として得られたハイブリッドモデルは、純粋な第一原理のホワイトボックスモデルに比べて計算性能が向上した。
考慮されたユースケースは、医療領域内外における他のモデリングおよびシミュレーションアプリケーションの例として機能する。
論文 参考訳(メタデータ) (2021-09-10T13:48:43Z) - Model Complexity of Deep Learning: A Survey [79.20117679251766]
深層学習におけるモデル複雑性に関する最新の研究を体系的に概観します。
本稿では,これら2つのカテゴリに関する既存研究について,モデルフレームワーク,モデルサイズ,最適化プロセス,データ複雑性の4つの重要な要因について概説する。
論文 参考訳(メタデータ) (2021-03-08T22:39:32Z) - Reconstruction of Pairwise Interactions using Energy-Based Models [3.553493344868414]
ペアワイズモデルとニューラルネットワークを組み合わせたハイブリッドモデルは,ペアワイズインタラクションの再構築において有意な改善をもたらす可能性があることを示す。
これは、単純な解釈可能なモデルと複雑なブラックボックスモデルが必ずしも二分法ではないという一般的な考え方と一致している。
論文 参考訳(メタデータ) (2020-12-11T20:15:10Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
本稿では、ストロークベースの描画タスクのような複雑な自由形式構造に対する生成モデルを提案する。
我々のアプローチは、自動補完図のようなインタラクティブなユースケースに適している。
論文 参考訳(メタデータ) (2020-06-17T15:22:54Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。