Comment on "Multiparty quantum mutual information: An alternative
definition"
- URL: http://arxiv.org/abs/2401.00218v1
- Date: Sat, 30 Dec 2023 13:04:11 GMT
- Title: Comment on "Multiparty quantum mutual information: An alternative
definition"
- Authors: Jaehak Lee, Gibeom Noh, Changsuk Noh, Jiyong Park
- Abstract summary: We show that, contrary to the claim by Kumar [Phys. Rev. A 96, 012332], the quantum dual total correlation of an $n$-partite quantum state cannot be represented.
We argue that the latter fails to yield a finite value for generalized $n$-partite Greenberger-Horne-Zeilinger states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that, contrary to the claim by Kumar [Phys. Rev. A 96, 012332
(2017)], the quantum dual total correlation of an $n$-partite quantum state
cannot be represented as the quantum relative entropy between $n-1$ copies of
the quantum state and the product of $n$ different reduced quantum states for
$n \geq 3$. Specifically, we argue that the latter fails to yield a finite
value for generalized $n$-partite Greenberger-Horne-Zeilinger states.
Related papers
- The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Mixed-state quantum anomaly and multipartite entanglement [8.070164241593814]
We show a surprising connection between mixed state entanglement and 't Hooft anomaly.
We generate examples of mixed states with nontrivial long-ranged multipartite entanglement.
We also briefly discuss mixed anomaly involving both strong and weak symmetries.
arXiv Detail & Related papers (2024-01-30T19:00:02Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Is there a finite complete set of monotones in any quantum resource theory? [39.58317527488534]
We show that there does not exist a finite set of resource monotones which completely determines all state transformations.
We show that totally ordered theories allow for free transformations between all pure states.
arXiv Detail & Related papers (2022-12-05T18:28:36Z) - The Wasserstein distance of order 1 for quantum spin systems on infinite
lattices [13.452510519858995]
We show a generalization of the Wasserstein distance of order 1 to quantum spin systems on the lattice $mathbbZd$.
We also prove that local quantum commuting interactions above a critical temperature satisfy a transportation-cost inequality.
arXiv Detail & Related papers (2022-10-20T17:46:18Z) - Relative Facts of Relational Quantum Mechanics are Incompatible with
Quantum Mechanics [0.0]
RQM measurement arise from interactions which entangle a system $$S and an observer $A$ without decoherence.
The criterion states that whenever an interpretation introduces a notion of outcomes, these outcomes must follow the probability distribution specified by the Born rule.
arXiv Detail & Related papers (2022-08-24T23:15:00Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Monotonicity of the quantum 2-Wasserstein distance [0.0]
We show that for $N=2$ dimensional Hilbert space the quantum 2-Wasserstein distance is monotonous with respect to any single-qubit quantum operation.
We conjecture that the unitary invariant quantum 2-Wasserstein semi-distance is monotonous with respect to all CPTP maps in any dimension $N$.
arXiv Detail & Related papers (2022-04-15T09:57:39Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Coherent preorder of quantum states [0.0]
We propose an approach to realize coherence distillation from rank-two mixed coherent states to $q$-level maximally coherent states.
One scheme of coherence manipulation between rank-two mixed states is also presented.
arXiv Detail & Related papers (2020-10-29T02:33:58Z) - Bosonic quantum communication across arbitrarily high loss channels [68.58838842613457]
A general attenuator $Phi_lambda, sigma$ is a bosonic quantum channel that acts by combining the input with a fixed environment state.
We show that for any arbitrary value of $lambda>0$ there exists a suitable single-mode state $sigma(lambda)$.
Our result holds even when we fix an energy constraint at the input of the channel, and implies that quantum communication at a constant rate is possible even in the limit of arbitrarily low transmissivity.
arXiv Detail & Related papers (2020-03-19T16:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.