論文の概要: Promoting Segment Anything Model towards Highly Accurate Dichotomous Image Segmentation
- arxiv url: http://arxiv.org/abs/2401.00248v4
- Date: Tue, 25 Mar 2025 12:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 10:43:48.471057
- Title: Promoting Segment Anything Model towards Highly Accurate Dichotomous Image Segmentation
- Title(参考訳): 高精度ディコトコス画像セグメント化に向けたセグメンテーションモデルの提案
- Authors: Xianjie Liu, Keren Fu, Yao Jiang, Qijun Zhao,
- Abstract要約: 本研究では,精度の高いオブジェクトセグメンテーションに向けてSegment Anything Model(SAM)を前進させるdis-SAMを提案する。
DIS-SAMは2段階のアプローチを採用しており、以前はプロンプトフリーのdisタスクを扱うように設計されていた改良されたアドバンストネットワークとSAMを統合している。
DIS-SAMは単純さにもかかわらずSAM、HQ-SAM、Pi-SAMを8.5%、最大で6.9%、最大で3.7%向上させる。
- 参考スコア(独自算出の注目度): 11.133337712285424
- License:
- Abstract: The Segment Anything Model (SAM) represents a significant breakthrough into foundation models for computer vision, providing a large-scale image segmentation model. However, despite SAM's zero-shot performance, its segmentation masks lack fine-grained details, particularly in accurately delineating object boundaries. Therefore, it is both interesting and valuable to explore whether SAM can be improved towards highly accurate object segmentation, which is known as the dichotomous image segmentation (DIS) task. To address this issue, we propose DIS-SAM, which advances SAM towards DIS with extremely accurate details. DIS-SAM is a framework specifically tailored for highly accurate segmentation, maintaining SAM's promptable design. DIS-SAM employs a two-stage approach, integrating SAM with a modified advanced network that was previously designed to handle the prompt-free DIS task. To better train DIS-SAM, we employ a ground truth enrichment strategy by modifying original mask annotations. Despite its simplicity, DIS-SAM significantly advances the SAM, HQ-SAM, and Pi-SAM ~by 8.5%, ~6.9%, and ~3.7% maximum F-measure. Our code at https://github.com/Tennine2077/DIS-SAM
- Abstract(参考訳): Segment Anything Model (SAM)は、コンピュータビジョンの基礎モデルにおける重要なブレークスルーであり、大規模なイメージセグメンテーションモデルを提供する。
しかし、SAMのゼロショット性能にもかかわらず、そのセグメンテーションマスクは細部の詳細を欠いている。
したがって、SAMが高度に高精度なオブジェクトセグメンテーション(DIS)タスクに改善できるかどうかを探求することは、興味深く、有益である。
この問題に対処するために, SAM を DIS へ拡張する DIS-SAM を提案する。
DIS-SAMは、SAMの迅速な設計を維持しながら、高度に正確なセグメンテーションに適したフレームワークである。
DIS-SAMは2段階のアプローチを採用しており、以前はプロンプトフリーのdisタスクを扱うように設計されていた改良されたアドバンストネットワークとSAMを統合している。
DIS-SAMのトレーニングを改善するために、元のマスクアノテーションを変更することによって、基礎的な真理豊か化戦略を採用する。
DIS-SAMはその単純さにもかかわらず、SAM、HQ-SAM、Pi-SAM ~8.5%、~6.9%、~3.7%の最大F測定値が大幅に向上した。
https://github.com/Tennine2077/DIS-SAM
関連論文リスト
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) は、強力なセグメンテーションと一般化機能を提供する視覚的基本モデルとして提案されている。
実物検出のためのMDSAM(Multi-scale and Detail-enhanced SAM)を提案する。
実験により,複数のSODデータセット上でのモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-08-08T09:09:37Z) - Segment Anything without Supervision [65.93211374889196]
高速かつ自動的な全画像分割のためのUnsupervised SAM(UnSAM)を提案する。
UnSAMは、視覚シーンの階層構造を「発見」するために、分割・コンカ戦略を利用する。
教師付きSAMは自己教師付きラベルの恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2024-06-28T17:47:32Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
病理画像の正確なオブジェクト分割機能を備えたWSI-SAM, Segment Anything Model (SAM) を提案する。
トレーニングオーバーヘッドを最小限にしながら、トレーニング済みの知識を完全に活用するために、SAMは凍結し、最小限のパラメータしか導入しません。
本モデルでは, 膵管癌 in situ (DCIS) セグメンテーションタスクと乳癌転移セグメンテーションタスクにおいて, SAMを4.1, 2.5パーセント上回った。
論文 参考訳(メタデータ) (2024-03-14T10:30:43Z) - BLO-SAM: Bi-level Optimization Based Overfitting-Preventing Finetuning
of SAM [37.1263294647351]
BLO-SAMを導入し、二段階最適化(BLO)に基づいてSAM(Segment Anything Model)を微調整する。
BLO-SAMは、モデルの重みパラメータのトレーニングと、トレーニングデータセットの2つの別々のサブセットへの迅速な埋め込みによって、過適合のリスクを低減する。
その結果、BLO-SAMは様々な最先端画像セマンティックセグメンテーション法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-26T06:36:32Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Segment anything, from space? [8.126645790463266]
SAM(Segment Anything Model)は、安価な入力プロンプトに基づいて、入力画像中のオブジェクトをセグメント化することができる。
SAMは通常、目標タスクで訓練された視覚モデルに似た、あるいは時として超えた認識精度を達成した。
SAMの性能が画像のオーバーヘッド問題にまで及んでいるかどうかを考察し、その開発に対するコミュニティの反応を導くのに役立てる。
論文 参考訳(メタデータ) (2023-04-25T17:14:36Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。