Client-wise Modality Selection for Balanced Multi-modal Federated
Learning
- URL: http://arxiv.org/abs/2401.00403v1
- Date: Sun, 31 Dec 2023 05:37:27 GMT
- Title: Client-wise Modality Selection for Balanced Multi-modal Federated
Learning
- Authors: Yunfeng Fan, Wenchao Xu, Haozhao Wang, Penghui Ruan and Song Guo
- Abstract summary: Existing client selection methods simply consider the variability among FL clients with uni-modal data.
Traditional client selection scheme in MFL may suffer from a severe modality-level bias, which impedes the collaborative exploitation of multi-modal data.
We propose a Client-wise Modality Selection scheme for MFL (CMSFed) that can comprehensively utilize information from each modality.
- Score: 18.390448116936753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selecting proper clients to participate in the iterative federated learning
(FL) rounds is critical to effectively harness a broad range of distributed
datasets. Existing client selection methods simply consider the variability
among FL clients with uni-modal data, however, have yet to consider clients
with multi-modalities. We reveal that traditional client selection scheme in
MFL may suffer from a severe modality-level bias, which impedes the
collaborative exploitation of multi-modal data, leading to insufficient local
data exploration and global aggregation. To tackle this challenge, we propose a
Client-wise Modality Selection scheme for MFL (CMSFed) that can comprehensively
utilize information from each modality via avoiding such client selection bias
caused by modality imbalance. Specifically, in each MFL round, the local data
from different modalities are selectively employed to participate in local
training and aggregation to mitigate potential modality imbalance of the global
model. To approximate the fully aggregated model update in a balanced way, we
introduce a novel local training loss function to enhance the weak modality and
align the divergent feature spaces caused by inconsistent modality adoption
strategies for different clients simultaneously. Then, a modality-level
gradient decoupling method is designed to derive respective submodular
functions to maintain the gradient diversity during the selection progress and
balance MFL according to local modality imbalance in each iteration. Our
extensive experiments showcase the superiority of CMSFed over baselines and its
effectiveness in multi-modal data exploitation.
Related papers
- On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
Multimodal Federated Cross Prototype Learning (MFCPL) is a novel approach for MFL under severely missing modalities.
MFCPL provides diverse modality knowledge in modality-shared level with the cross-modal regularization and modality-specific level with cross-modal contrastive mechanism.
Our approach introduces the cross-modal alignment to provide regularization for modality-specific features, thereby enhancing overall performance.
arXiv Detail & Related papers (2024-01-25T02:25:23Z) - Balanced Multi-modal Federated Learning via Cross-Modal Infiltration [19.513099949266156]
Federated learning (FL) underpins advancements in privacy-preserving distributed computing.
We propose a novel Cross-Modal Infiltration Federated Learning (FedCMI) framework.
arXiv Detail & Related papers (2023-12-31T05:50:15Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - VFedMH: Vertical Federated Learning for Training Multiple Heterogeneous
Models [53.30484242706966]
This paper proposes a novel approach called Vertical federated learning for training multiple Heterogeneous models (VFedMH)
To protect the participants' local embedding values, we propose an embedding protection method based on lightweight blinding factors.
Experiments are conducted to demonstrate that VFedMH can simultaneously train multiple heterogeneous models with heterogeneous optimization and outperform some recent methods in model performance.
arXiv Detail & Related papers (2023-10-20T09:22:51Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning (FL) is a framework for on-device collaborative training of machine learning models.
First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client.
We study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions.
arXiv Detail & Related papers (2021-08-23T15:47:53Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.