Probing topological phase transition with non-Hermitian perturbations
- URL: http://arxiv.org/abs/2401.00530v1
- Date: Sun, 31 Dec 2023 16:19:42 GMT
- Title: Probing topological phase transition with non-Hermitian perturbations
- Authors: Jingcheng Liang and Chen Fang and Jiangping Hu
- Abstract summary: We show that under carefully designed non-Hermitian perturbations, the Loschmidt echo(LE) decays into 1/N where N is the ground state degeneracy in the topological non-trivial phase.
This distinction is robust against small parameter deviations in the non-Hermitian perturbations.
- Score: 8.275733120445855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that non-Hermitian perturbations can probe topological phase
transitions and unambiguously detect non-Abelian zero modes. We show that under
carefully designed non-Hermitian perturbations, the Loschmidt echo(LE) decays
into 1/N where N is the ground state degeneracy in the topological non-trivial
phase, while it approaches 1 in the trivial phase. This distinction is robust
against small parameter deviations in the non-Hermitian perturbations. We
further study four well-known models that support Majorana or parafermionic
zero modes. By calculating their dynamical responses to specific non-Hermitian
perturbations, we prove that the steady-state LE can indeed differentiate
between different phases. This method avoids the ambiguity introduced by
trivial zero-energy states and thus provides an alternative and promising way
to demonstrate the emergence of topologically non-trivial phases. The
experimental realizations of non-Hermitian perturbations are discussed.
Related papers
- An unusual phase transition in a non-Hermitian Su-Schrieffer-Heeger model [0.0]
This article studies a non-Hermitian Su-Schrieffer-Heeger (SSH) model which has periodically staggered Hermitian and non-Hermitian dimers.
We find that the system supports only complex eigenspectra for all values of $u neq 0$ and it stabilizes only non-trivial insulating phase for higher loss-gain strength.
arXiv Detail & Related papers (2024-11-21T17:21:48Z) - Emerging Non-Hermitian Topology in a Chiral Driven-Dissipative Bose-Hubbard Model [0.0]
We introduce a driven-dissipative Bose-Hubbard chain describing coupled lossy photonic modes.
We numerically prove that the steady-state solution is stabilized by an inhomogeneous profile of the driving amplitude.
Our work shows the emergence of non-Hermitian topological phases in an interacting model that can be naturally implemented with superconducting circuits.
arXiv Detail & Related papers (2024-11-13T19:00:34Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Unsupervised Learning of Symmetry Protected Topological Phase
Transitions [0.0]
In particular, we show that the phase transitions associated with these phases can be detected in different bosonic and fermionic models in one dimension.
Our approach serves as an inexpensive computational method for detecting topological phases transitions associated with SPT systems.
arXiv Detail & Related papers (2021-11-16T19:34:16Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Topological delocalization transitions and mobility edges in the
nonreciprocal Maryland model [0.0]
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices.
We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos.
Explicit expressions of the complex energy dispersions, phase boundaries and mobility edges are found.
arXiv Detail & Related papers (2021-08-16T15:35:52Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Non-Hermitian Floquet phases with even-integer topological invariants in
a periodically quenched two-leg ladder [0.0]
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical and transport properties.
We introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects.
Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
arXiv Detail & Related papers (2020-06-16T03:22:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.