論文の概要: Credible Teacher for Semi-Supervised Object Detection in Open Scene
- arxiv url: http://arxiv.org/abs/2401.00695v2
- Date: Wed, 3 Jan 2024 02:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-04 11:11:19.868909
- Title: Credible Teacher for Semi-Supervised Object Detection in Open Scene
- Title(参考訳): オープンシーンにおける半教師付き物体検出のための信頼できる教師
- Authors: Jingyu Zhuang, Kuo Wang, Liang Lin, Guanbin Li
- Abstract要約: Open Scene Semi-Supervised Object Detection (O-SSOD)では、ラベル付きデータはラベル付きデータで観測されていない未知のオブジェクトを含む可能性がある。
より不確実性が、偽ラベルのローカライズと分類精度の低下につながるため、主に自己学習に依存する現在の手法には有害である。
我々は,不確実な擬似ラベルがモデルに誤解をもたらすのを防ぐための,エンドツーエンドのフレームワークであるCredible Teacherを提案する。
- 参考スコア(独自算出の注目度): 106.25850299007674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-Supervised Object Detection (SSOD) has achieved resounding success by
leveraging unlabeled data to improve detection performance. However, in Open
Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contains
unknown objects not observed in the labeled data, which will increase
uncertainty in the model's predictions for known objects. It is detrimental to
the current methods that mainly rely on self-training, as more uncertainty
leads to the lower localization and classification precision of pseudo labels.
To this end, we propose Credible Teacher, an end-to-end framework. Credible
Teacher adopts an interactive teaching mechanism using flexible labels to
prevent uncertain pseudo labels from misleading the model and gradually reduces
its uncertainty through the guidance of other credible pseudo labels. Empirical
results have demonstrated our method effectively restrains the adverse effect
caused by O-SSOD and significantly outperforms existing counterparts.
- Abstract(参考訳): SSOD(Semi-Supervised Object Detection)は、ラベルのないデータを活用して検出性能を向上させることで、大きな成功を収めた。
しかし、open scene semi-supervised object detection (o-ssod) では、ラベル付きデータで観測されていない未知のオブジェクトを含む場合があり、既知のオブジェクトに対するモデルの予測の不確実性が高まる。
より不確実性が、偽ラベルのローカライズと分類精度の低下につながるため、主に自己学習に依存する現在の手法には有害である。
そこで我々は,エンドツーエンドのフレームワークであるCredible Teacherを提案する。
Credible Teacherは、フレキシブルなラベルを用いたインタラクティブな教育機構を採用し、不確実な擬似ラベルがモデルを誤解させるのを防ぐ。
実験の結果,O-SSODによる副作用を効果的に抑制し,既存手法よりも有意に優れていた。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning [24.733773208117363]
自己学習段階における偽ラベルの誤りを減らすために,不確かさを意識した教師学習を提案する。
また、2つの学生ネットワーク間で信頼性の高いラベルを転送できる学生・学生協調学習を提案する。
提案手法を5つのDS-NERデータセット上で評価し,提案手法が最先端のDS-NER手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-14T09:09:58Z) - Semi-Supervised Semantic Segmentation via Gentle Teaching Assistant [72.4512562104361]
擬似ラベル付きラベル付きラベル付きデータは,特徴抽出器における代表的特徴の学習を容易にすることができると論じる。
そこで本研究では,擬似ラベルが特徴抽出器やマスク予測器に与える影響を解消する新しい枠組みであるジェントル指導アシスタント(GTA-Seg)を提案する。
論文 参考訳(メタデータ) (2023-01-18T07:11:24Z) - Semi-Supervised Object Detection with Object-wise Contrastive Learning
and Regression Uncertainty [46.21528260727673]
そこで本研究では,教師学習フレームワークにおける2段階の擬似ラベルフィルタリング手法を提案する。
学生ネットワークは、分類および回帰ヘッドのための擬似ラベルを共同フィルタリングすることにより、教師ネットワークからオブジェクト検出タスクのためのより良い指導を受ける。
論文 参考訳(メタデータ) (2022-12-06T04:37:51Z) - Uncertainty-aware Mean Teacher for Source-free Unsupervised Domain
Adaptive 3D Object Detection [6.345037597566315]
擬似ラベルに基づく自己学習アプローチは、ソースフリーな教師なしドメイン適応の一般的な方法である。
本研究では,学習中に誤字を暗黙的にフィルタリングする不確実性認識型平均教師フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-29T18:17:09Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。