Privacy-Preserving Data in IoT-based Cloud Systems: A Comprehensive Survey with AI Integration
- URL: http://arxiv.org/abs/2401.00794v1
- Date: Mon, 1 Jan 2024 15:48:39 GMT
- Title: Privacy-Preserving Data in IoT-based Cloud Systems: A Comprehensive Survey with AI Integration
- Authors: D. Dhinakaran, S. M. Udhaya Sankar, D. Selvaraj, S. Edwin Raja,
- Abstract summary: This survey paper meticulously explores the landscape of privacy issues in the dynamic intersection of IoT and cloud systems.
The comprehensive literature review synthesizes existing research, illuminating key challenges and discerning emerging trends in privacy preserving techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the integration of Internet of Things devices with cloud computing proliferates, the paramount importance of privacy preservation comes to the forefront. This survey paper meticulously explores the landscape of privacy issues in the dynamic intersection of IoT and cloud systems. The comprehensive literature review synthesizes existing research, illuminating key challenges and discerning emerging trends in privacy preserving techniques. The categorization of diverse approaches unveils a nuanced understanding of encryption techniques, anonymization strategies, access control mechanisms, and the burgeoning integration of artificial intelligence. Notable trends include the infusion of machine learning for dynamic anonymization, homomorphic encryption for secure computation, and AI-driven access control systems. The culmination of this survey contributes a holistic view, laying the groundwork for understanding the multifaceted strategies employed in securing sensitive data within IoT-based cloud environments. The insights garnered from this survey provide a valuable resource for researchers, practitioners, and policymakers navigating the complex terrain of privacy preservation in the evolving landscape of IoT and cloud computing
Related papers
- A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks [42.3024294376025]
Machine unlearning is a research hotspot in the field of privacy protection.
Recent researchers have found potential privacy leakages of various of machine unlearning approaches.
We analyze privacy risks in various aspects, including definitions, implementation methods, and real-world applications.
arXiv Detail & Related papers (2024-06-10T11:31:04Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [56.44953602790945]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
This article offers an exhaustive tutorial for novices in NSVAD.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.
It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)
As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - You Still See Me: How Data Protection Supports the Architecture of AI Surveillance [5.989015605760986]
We show how privacy-preserving techniques in the development of AI systems can support surveillance infrastructure under the guise of regulatory permissibility.
We propose technology and policy strategies to evaluate privacy-preserving techniques in light of the protections they actually confer.
arXiv Detail & Related papers (2024-02-09T18:39:29Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.