Privacy Preservation Techniques (PPTs) in IoT Systems: A Scoping Review and Future Directions
- URL: http://arxiv.org/abs/2503.02455v1
- Date: Tue, 04 Mar 2025 10:03:45 GMT
- Title: Privacy Preservation Techniques (PPTs) in IoT Systems: A Scoping Review and Future Directions
- Authors: Emmanuel Alalade, Ashraf Matrawy,
- Abstract summary: This study carried out a scoping review of different types of privacy preservation techniques (PPTs) used in previous research works on IoT systems between 2010 and early 2023.<n>PPTs achieve various privacy goals and address different privacy concerns by mitigating potential privacy threats within IoT systems.<n>Key findings, such as the prominent privacy goal and privacy type in IoT, are discussed in this survey.
- Score: 1.1970409518725493
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Privacy preservation in Internet of Things (IoT) systems requires the use of privacy-enhancing technologies (PETs) built from innovative technologies such as cryptography and artificial intelligence (AI) to create techniques called privacy preservation techniques (PPTs). These PPTs achieve various privacy goals and address different privacy concerns by mitigating potential privacy threats within IoT systems. This study carried out a scoping review of different types of PPTs used in previous research works on IoT systems between 2010 and early 2023 to further explore the advantages of privacy preservation in these systems. This scoping review looks at privacy goals, possible technologies used for building PET, the integration of PPTs into the computing layer of the IoT architecture, different IoT applications in which PPTs are deployed, and the different privacy types addressed by these techniques within IoT systems. Key findings, such as the prominent privacy goal and privacy type in IoT, are discussed in this survey, along with identified research gaps that could inform future endeavors in privacy research and benefit the privacy research community and other stakeholders in IoT systems.
Related papers
- Privacy Threats and Countermeasures in Federated Learning for Internet of Things: A Systematic Review [0.0]
Federated Learning in the Internet of Things (IoT) might introduce significant privacy and security concerns.
We systematically analysed recent literature to identify privacy threats in FL within IoT environments.
We evaluated the defensive measures that can be employed to mitigate these threats.
arXiv Detail & Related papers (2024-07-25T15:01:56Z) - Privacy-Preserving Data in IoT-based Cloud Systems: A Comprehensive Survey with AI Integration [0.0]
This survey paper meticulously explores the landscape of privacy issues in the dynamic intersection of IoT and cloud systems.
The comprehensive literature review synthesizes existing research, illuminating key challenges and discerning emerging trends in privacy preserving techniques.
arXiv Detail & Related papers (2024-01-01T15:48:39Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - An Overview of AI and Blockchain Integration for Privacy-Preserving [1.0155633074816937]
This paper presents an overview of AI and blockchain, summarizing their combination along with derived privacy protection technologies.
It then explores specific application scenarios in data encryption, de-identification, multi-tier distributed ledgers, and k-anonymity methods.
The paper evaluates five critical aspects of AI-blockchain-integration privacy protection systems, including authorization management, access control, data protection, network security, and scalability.
arXiv Detail & Related papers (2023-05-06T04:56:45Z) - FedBlockHealth: A Synergistic Approach to Privacy and Security in
IoT-Enabled Healthcare through Federated Learning and Blockchain [2.993954417409032]
The rapid adoption of Internet of Things (IoT) devices in healthcare has introduced new challenges in preserving data privacy, security and patient safety.
Traditional approaches need to ensure security and privacy while maintaining computational efficiency.
This paper proposes a novel hybrid approach combining federated learning and blockchain technology to provide a secure and privacy-preserved solution.
arXiv Detail & Related papers (2023-04-16T01:55:31Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
We present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP)
Key points and high-level contents of the article were originated from the discussions from "Differential Privacy (DP): Challenges Towards the Next Frontier"
This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions.
arXiv Detail & Related papers (2023-04-14T05:29:18Z) - Mitigating Sovereign Data Exchange Challenges: A Mapping to Apply
Privacy- and Authenticity-Enhancing Technologies [67.34625604583208]
Authenticity Enhancing Technologies (AETs) and Privacy-Enhancing Technologies (PETs) are considered to engage in Sovereign Data Exchange (SDE)
PETs and AETs are technically complex, which impedes their adoption.
This study empirically constructs a challenge-oriented technology mapping.
arXiv Detail & Related papers (2022-06-20T08:16:42Z) - A Systematic Literature Review on Blockchain Enabled Federated Learning
Framework for Internet of Vehicles [1.0499611180329804]
Federated Learning (FL) has been proven as an emerging idea to protect IoVs data privacy and security.
We present a comprehensive survey on the application and implementation of BC-Enabled Learning frameworks for IoVs.
arXiv Detail & Related papers (2022-03-10T07:06:04Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
We provide an industry research view for approaching the design, deployment, and operation of trustworthy AI inference systems.
We highlight opportunities and challenges in AI systems using trusted execution environments.
We outline areas of further development that require the global collective attention of industry, academia, and government researchers.
arXiv Detail & Related papers (2020-08-10T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.