論文の概要: Understanding Federated Learning from IID to Non-IID dataset: An Experimental Study
- arxiv url: http://arxiv.org/abs/2502.00182v2
- Date: Fri, 07 Feb 2025 14:31:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:54:50.316862
- Title: Understanding Federated Learning from IID to Non-IID dataset: An Experimental Study
- Title(参考訳): IIDから非IIDデータセットへのフェデレーション学習の理解:実験的検討
- Authors: Jungwon Seo, Ferhat Ozgur Catak, Chunming Rong,
- Abstract要約: フェデレーション・ラーニング(FL)は、生データを共有せずに分散化されたデータソース間で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
FLにおける重要な課題は、クライアントデータが非IID(非独立で同一の分散)であることが多く、集中型学習と比較してパフォーマンスが低下することです。
- 参考スコア(独自算出の注目度): 5.680416078423551
- License:
- Abstract: As privacy concerns and data regulations grow, federated learning (FL) has emerged as a promising approach for training machine learning models across decentralized data sources without sharing raw data. However, a significant challenge in FL is that client data are often non-IID (non-independent and identically distributed), leading to reduced performance compared to centralized learning. While many methods have been proposed to address this issue, their underlying mechanisms are often viewed from different perspectives. Through a comprehensive investigation from gradient descent to FL, and from IID to non-IID data settings, we find that inconsistencies in client loss landscapes primarily cause performance degradation in non-IID scenarios. From this understanding, we observe that existing methods can be grouped into two main strategies: (i) adjusting parameter update paths and (ii) modifying client loss landscapes. These findings offer a clear perspective on addressing non-IID challenges in FL and help guide future research in the field.
- Abstract(参考訳): プライバシの懸念とデータ規制の増大に伴い、フェデレートドラーニング(FL)は、生データを共有せずに分散化されたデータソース間で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
しかし、FLにおける重要な課題は、クライアントデータが非IID(非独立で同一の分散)であることが多く、集中型学習と比較してパフォーマンスが低下することです。
この問題に対処するために多くの方法が提案されているが、その基盤となるメカニズムは、しばしば異なる視点から見られている。
FLへの勾配降下やIDから非IIDデータ設定への包括的調査により、クライアントの損失状況の不整合が主に非IIDシナリオにおける性能劣化を引き起こすことが判明した。
この理解から、既存の方法が2つの主要な戦略にまとめられることを観察する。
(i)パラメータ更新パスの調整
(ii)クライアントの損失状況を変更すること。
これらの知見は、FLにおける非IID課題に対処する上での明確な視点を提供し、この分野における今後の研究の指針となる。
関連論文リスト
- Non-IID data in Federated Learning: A Survey with Taxonomy, Metrics, Methods, Frameworks and Future Directions [2.9434966603161072]
フェデレートラーニング(FL)は、プライベートデータを共有せずにMLモデルを集合的にトレーニングすることを可能にする。
FLは、クライアントにまたがるデータが独立で、同一に分散された(非IID)データである場合に苦労する。
この技術調査は、非IIDデータ、パーティションプロトコル、メトリクスの詳細な分類を提供することで、このギャップを埋めることを目的としています。
論文 参考訳(メタデータ) (2024-11-19T09:53:28Z) - A review on different techniques used to combat the non-IID and
heterogeneous nature of data in FL [0.0]
Federated Learning(FL)は、複数のエッジデバイス間で協調的なモデルトレーニングを可能にする機械学習アプローチである。
FLの重要性は、医療や金融などの業界で特に顕著であり、データのプライバシが最重要視されている。
この報告は、非IIDおよび異種データから生じる問題を掘り下げ、これらの課題に対処するために設計された現在のアルゴリズムを探求する。
論文 参考訳(メタデータ) (2024-01-01T16:34:00Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
未測定の共同設立者を対象にオフライン強化学習(RL)について検討した。
そこで本稿では, 最適クラスポリシーを見つけるための, 有限サンプルの準最適性を保証した多種多様なポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2022-09-18T22:03:55Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
非IIDデータの処理は、フェデレーション学習における最も難しい問題の1つである。
本稿では, フェデレート学習における非IIDデータとロングテールデータの結合問題について検討し, フェデレート・アンサンブル蒸留と不均衡(FEDIC)という対応ソリューションを提案する。
FEDICはモデルアンサンブルを使用して、非IIDデータでトレーニングされたモデルの多様性を活用する。
論文 参考訳(メタデータ) (2022-04-30T06:17:36Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
フェデレートラーニング(Federated Learning)は、複数のデバイスや機関が、データをプライベートに保存しながら、機械学習モデルを協調的にトレーニングすることを可能にする、新しいフレームワークである。
本研究では,データの統計的不均一性を正式に分類し,それに直面することのできる最も顕著な学習戦略をレビューする。
同時に、継続学習のような他の機械学習フレームワークからのアプローチを導入し、データの不均一性にも対処し、フェデレートラーニング設定に容易に適応できるようにします。
論文 参考訳(メタデータ) (2021-11-26T09:57:11Z) - Federated Learning on Non-IID Data: A Survey [11.431837357827396]
フェデレーション学習(Federated Learning)は、プライバシ保護のための分散機械学習フレームワークである。
連合学習で訓練されたモデルは、通常、標準集中学習モードで訓練されたモデルよりもパフォーマンスが劣る。
論文 参考訳(メタデータ) (2021-06-12T19:45:35Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Federated Learning on Non-IID Data Silos: An Experimental Study [34.28108345251376]
トレーニングデータは断片化され、複数のデータサイロの分散データベースを形成している。
本稿では,典型的な非IIDデータケースをカバーする包括的データ分割手法を提案する。
非IIDはFLアルゴリズムの精度を学習する上で大きな課題をもたらしており、既存のFLアルゴリズムが他のどの場合よりも優れているものはない。
論文 参考訳(メタデータ) (2021-02-03T14:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。