Improving the Stability of Diffusion Models for Content Consistent
Super-Resolution
- URL: http://arxiv.org/abs/2401.00877v1
- Date: Sat, 30 Dec 2023 10:22:59 GMT
- Title: Improving the Stability of Diffusion Models for Content Consistent
Super-Resolution
- Authors: Lingchen Sun, Rongyuan Wu, Zhengqiang Zhang, Hongwei Yong, Lei Zhang
- Abstract summary: generative priors of pre-trained latent diffusion models have demonstrated great potential to enhance the perceptual quality of image super-resolution (SR) results.
We propose to employ the diffusion models to refine image structures, while employing the generative adversarial training to enhance image fine details.
Specifically, we propose a non-uniform timestep learning strategy to train a compact diffusion network, which has high efficiency and stability to reproduce the image main structures.
- Score: 17.2713480052151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generative priors of pre-trained latent diffusion models have
demonstrated great potential to enhance the perceptual quality of image
super-resolution (SR) results. Unfortunately, the existing diffusion
prior-based SR methods encounter a common problem, i.e., they tend to generate
rather different outputs for the same low-resolution image with different noise
samples. Such stochasticity is desired for text-to-image generation tasks but
problematic for SR tasks, where the image contents are expected to be well
preserved. To improve the stability of diffusion prior-based SR, we propose to
employ the diffusion models to refine image structures, while employing the
generative adversarial training to enhance image fine details. Specifically, we
propose a non-uniform timestep learning strategy to train a compact diffusion
network, which has high efficiency and stability to reproduce the image main
structures, and finetune the pre-trained decoder of variational auto-encoder
(VAE) by adversarial training for detail enhancement. Extensive experiments
show that our proposed method, namely content consistent super-resolution
(CCSR), can significantly reduce the stochasticity of diffusion prior-based SR,
improving the content consistency of SR outputs and speeding up the image
generation process. Codes and models can be found at
{https://github.com/csslc/CCSR}.
Related papers
- One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation [53.24542646616045]
We propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for image super-resolution (SR) generation.<n>VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-frequency Perception (HFP) loss.<n>The proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.
arXiv Detail & Related papers (2025-06-03T08:28:13Z) - Semantic-Guided Diffusion Model for Single-Step Image Super-Resolution [13.187007344274662]
Diffusion-based image super-resolution (SR) methods have demonstrated remarkable performance.<n>Recent advancements have introduced deterministic sampling processes that reduce inference from 15 iterative steps to a single step.<n>We propose SAMSR, a semantic-guided diffusion framework that incorporates semantic segmentation masks into the sampling process.
arXiv Detail & Related papers (2025-05-11T17:45:05Z) - Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution [7.920423405957888]
We propose a novel single-step diffusion approach designed to enhance both efficiency and visual quality in RSISR tasks.
The proposed LCMSR reduces the iterative steps of traditional diffusion models from 50-1000 or more to just a single step.
Experimental results demonstrate that LCMSR effectively balances efficiency and performance, achieving inference times comparable to non-diffusion models.
arXiv Detail & Related papers (2025-03-25T09:56:21Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.
We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.
Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSR achieves superior objective metrics and visual quality compared to the state-of-the-art SR methods.
It reduces the inference time of diffusion-based SR methods to a level comparable to that of non-diffusion methods.
arXiv Detail & Related papers (2024-10-30T09:14:13Z) - ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution [28.945663118445037]
Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ) images from low-quality (LQ) inputs corrupted by unknown and complex degradations.
We introduce ConsisSR to handle both semantic and pixel-level consistency.
arXiv Detail & Related papers (2024-10-17T17:41:52Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Diffusion-Aided Joint Source Channel Coding For High Realism Wireless Image Transmission [24.372996233209854]
DiffJSCC is a novel framework that produces high-realism images via the conditional diffusion denoising process.
It can achieve highly realistic reconstructions for 768x512 pixel Kodak images with only 3072 symbols.
arXiv Detail & Related papers (2024-04-27T00:12:13Z) - Invertible Diffusion Models for Compressed Sensing [22.293412255419614]
Invertible Diffusion Models (IDM) is a novel efficient, end-to-end diffusion-based compressed sensing method.
Our IDM outperforms existing state-of-the-art CS networks by up to 2.64dB in PSNR.
Compared to the recent diffusion-based approach DDNM, our IDM achieves up to 10.09dB PSNR gain and 14.54 times faster inference.
arXiv Detail & Related papers (2024-03-25T17:59:41Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff is a DM-based blind SR method to tackle the blind degradation settings in SISR.
BlindDiff seamlessly integrates the MAP-based optimization into DMs.
Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance.
arXiv Detail & Related papers (2024-03-15T11:21:34Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results.
We propose a plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods.
The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model.
arXiv Detail & Related papers (2023-05-24T17:09:54Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
Self-supervised diffusion model for hyperspectral image restoration is proposed.
textttDDS2M enjoys stronger ability to generalization compared to existing diffusion-based methods.
Experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate textttDDS2M's superiority over the existing task-specific state-of-the-arts.
arXiv Detail & Related papers (2023-03-12T14:57:04Z) - Scalable Deep Compressive Sensing [43.92187349325869]
Most existing deep learning methods train different models for different subsampling ratios, which brings additional hardware burden.
We develop a general framework named scalable deep compressive sensing (SDCS) for the scalable sampling and reconstruction (SSR) of all existing end-to-end-trained models.
Experimental results show that models with SDCS can achieve SSR without changing their structure while maintaining good performance, and SDCS outperforms other SSR methods.
arXiv Detail & Related papers (2021-01-20T08:42:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.