Improving the Stability and Efficiency of Diffusion Models for Content Consistent Super-Resolution
- URL: http://arxiv.org/abs/2401.00877v2
- Date: Wed, 25 Sep 2024 03:13:27 GMT
- Title: Improving the Stability and Efficiency of Diffusion Models for Content Consistent Super-Resolution
- Authors: Lingchen Sun, Rongyuan Wu, Jie Liang, Zhengqiang Zhang, Hongwei Yong, Lei Zhang,
- Abstract summary: generative priors of pre-trained latent diffusion models (DMs) have demonstrated great potential to enhance the visual quality of image super-resolution (SR) results.
We propose to partition the generative SR process into two stages, where the DM is employed for reconstructing image structures and the GAN is employed for improving fine-grained details.
Once trained, our proposed method, namely content consistent super-resolution (CCSR),allows flexible use of different diffusion steps in the inference stage without re-training.
- Score: 18.71638301931374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generative priors of pre-trained latent diffusion models (DMs) have demonstrated great potential to enhance the visual quality of image super-resolution (SR) results. However, the noise sampling process in DMs introduces randomness in the SR outputs, and the generated contents can differ a lot with different noise samples. The multi-step diffusion process can be accelerated by distilling methods, but the generative capacity is difficult to control. To address these issues, we analyze the respective advantages of DMs and generative adversarial networks (GANs) and propose to partition the generative SR process into two stages, where the DM is employed for reconstructing image structures and the GAN is employed for improving fine-grained details. Specifically, we propose a non-uniform timestep sampling strategy in the first stage. A single timestep sampling is first applied to extract the coarse information from the input image, then a few reverse steps are used to reconstruct the main structures. In the second stage, we finetune the decoder of the pre-trained variational auto-encoder by adversarial GAN training for deterministic detail enhancement. Once trained, our proposed method, namely content consistent super-resolution (CCSR),allows flexible use of different diffusion steps in the inference stage without re-training. Extensive experiments show that with 2 or even 1 diffusion step, CCSR can significantly improve the content consistency of SR outputs while keeping high perceptual quality. Codes and models can be found at \href{https://github.com/csslc/CCSR}{https://github.com/csslc/CCSR}.
Related papers
- Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.
We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.
Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSR achieves superior objective metrics and visual quality compared to the state-of-the-art SR methods.
It reduces the inference time of diffusion-based SR methods to a level comparable to that of non-diffusion methods.
arXiv Detail & Related papers (2024-10-30T09:14:13Z) - ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution [28.945663118445037]
Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ) images from low-quality (LQ) inputs corrupted by unknown and complex degradations.
We introduce ConsisSR to handle both semantic and pixel-level consistency.
arXiv Detail & Related papers (2024-10-17T17:41:52Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Diffusion-Aided Joint Source Channel Coding For High Realism Wireless Image Transmission [24.372996233209854]
DiffJSCC is a novel framework that produces high-realism images via the conditional diffusion denoising process.
It can achieve highly realistic reconstructions for 768x512 pixel Kodak images with only 3072 symbols.
arXiv Detail & Related papers (2024-04-27T00:12:13Z) - Invertible Diffusion Models for Compressed Sensing [22.293412255419614]
Invertible Diffusion Models (IDM) is a novel efficient, end-to-end diffusion-based compressed sensing method.
Our IDM outperforms existing state-of-the-art CS networks by up to 2.64dB in PSNR.
Compared to the recent diffusion-based approach DDNM, our IDM achieves up to 10.09dB PSNR gain and 14.54 times faster inference.
arXiv Detail & Related papers (2024-03-25T17:59:41Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff is a DM-based blind SR method to tackle the blind degradation settings in SISR.
BlindDiff seamlessly integrates the MAP-based optimization into DMs.
Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance.
arXiv Detail & Related papers (2024-03-15T11:21:34Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
Self-supervised diffusion model for hyperspectral image restoration is proposed.
textttDDS2M enjoys stronger ability to generalization compared to existing diffusion-based methods.
Experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate textttDDS2M's superiority over the existing task-specific state-of-the-arts.
arXiv Detail & Related papers (2023-03-12T14:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.