論文の概要: LaFFi: Leveraging Hybrid Natural Language Feedback for Fine-tuning
Language Models
- arxiv url: http://arxiv.org/abs/2401.00907v1
- Date: Sun, 31 Dec 2023 21:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 15:22:38.516013
- Title: LaFFi: Leveraging Hybrid Natural Language Feedback for Fine-tuning
Language Models
- Title(参考訳): LaFFi: 微調整言語モデルのためのハイブリッド自然言語フィードバックの活用
- Authors: Qianxi Li, Yingyue Cao, Jikun Kang, Tianpei Yang, Xi Chen, Jun Jin and
Matthew E. Taylor
- Abstract要約: 微調整大型言語モデル(LLM)は、特定の下流タスクに訓練されたモデルを適用する。
Supervised Fine-Tuning (SFT) は、LLMが望ましい回答を得るために訓練される一般的なアプローチである。
本稿では,LLMのための自然言語フィードバック (Natural Language Feedback for Finetuning LLMs, LaFFi) という,SFTの代替手法を提案する。
- 参考スコア(独自算出の注目度): 14.087415157225715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning Large Language Models (LLMs) adapts a trained model to specific
downstream tasks, significantly improving task-specific performance. Supervised
Fine-Tuning (SFT) is a common approach, where an LLM is trained to produce
desired answers. However, LLMs trained with SFT sometimes make simple mistakes
and result in hallucinations on reasoning tasks such as question-answering.
Without external feedback, it is difficult for SFT to learn a good mapping
between the question and the desired answer, especially with a small dataset.
This paper introduces an alternative to SFT called Natural Language Feedback
for Finetuning LLMs (LaFFi). LaFFi has LLMs directly predict the feedback they
will receive from an annotator. We find that requiring such reflection can
significantly improve the accuracy in in-domain question-answering tasks,
providing a promising direction for the application of natural language
feedback in the realm of SFT LLMs. Additional ablation studies show that the
portion of human-annotated data in the annotated datasets affects the
fine-tuning performance.
- Abstract(参考訳): 微調整大型言語モデル(LLM)は、訓練されたモデルを特定の下流タスクに適用し、タスク固有のパフォーマンスを大幅に改善する。
Supervised Fine-Tuning (SFT) は、LLMが望ましい回答を得るために訓練される一般的なアプローチである。
しかし、SFTで訓練されたLSMは単純な誤りを犯し、質問応答のような推論タスクに幻覚をもたらすことがある。
外部からのフィードバックがなければ、特に小さなデータセットを用いて、SFTが質問と望ましい回答の適切なマッピングを学ぶことは困難である。
本稿では,LLMのための自然言語フィードバック (Natural Language Feedback for Finetuning LLMs, LaFFi) という,SFTの代替手法を提案する。
LaFFiには、アノテータからのフィードバックを直接予測するLLMがある。
SFT LLMの領域における自然言語フィードバックの適用に期待できる方向を提供するため,そのようなリフレクションを必要とすると,ドメイン内質問応答タスクの精度が大幅に向上することがわかった。
追加のアブレーション研究により、アノテートデータセット内の人間の注釈付きデータの一部が微調整性能に影響を与えることが示されている。
関連論文リスト
- R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning [17.73193523921637]
大規模言語モデル(LLM)は、多様な自然言語処理(NLP)タスクにおいて顕著な能力を示している。
LLMは通常、制御された微調整(SFT)を行い、その後、下流のアプリケーションで使用できるように調整する。
本稿では,PLMファインチューニングのための新しいPArallelトレーニングパラダイムであるPAFTを紹介する。
論文 参考訳(メタデータ) (2024-06-25T20:11:37Z) - Preserving Knowledge in Large Language Model with Model-Agnostic Self-Decompression [40.4998607679863]
大規模言語モデル(LLM)は、ドメイン固有のデータに対して、事前訓練後または監督された微調整後(SFT)において、破滅的な忘れ込みに悩まされることが多い。
本稿では,TG-SFTに着目し,SFTデータを合成的に生成する。
論文 参考訳(メタデータ) (2024-06-17T09:17:40Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - P-Adapters: Robustly Extracting Factual Information from Language Models
with Diverse Prompts [7.657992756210283]
埋め込み層と大規模言語モデルの第一の注意層の間に位置する軽量モデルであるP-Adaptersを紹介します。
LLMの埋め込みを入力とし、LLMに問い合わせるのに使用される連続的なプロンプトを出力する。
それらは、一貫性の12~26%の絶対的な改善と、自然言語クエリのみを使用するベースラインよりも36~50%の精度の絶対的な改善を示す。
論文 参考訳(メタデータ) (2021-10-14T11:32:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。