Feature-based Evolutionary Diversity Optimization of Discriminating Instances for Chance-constrained Optimization Problems
- URL: http://arxiv.org/abs/2501.14284v1
- Date: Fri, 24 Jan 2025 06:55:54 GMT
- Title: Feature-based Evolutionary Diversity Optimization of Discriminating Instances for Chance-constrained Optimization Problems
- Authors: Saba Sadeghi Ahouei, Denis Antipov, Aneta Neumann, Frank Neumann,
- Abstract summary: We evolve benchmarking instances for chance-constrained optimization problems that contain components characterized by their expected values and variances.
Our method successfully generates diverse instances based on different features while effectively distinguishing the performance between a pair of algorithms.
- Score: 9.617143859697322
- License:
- Abstract: Algorithm selection is crucial in the field of optimization, as no single algorithm performs perfectly across all types of optimization problems. Finding the best algorithm among a given set of algorithms for a given problem requires a detailed analysis of the problem's features. To do so, it is important to have a diverse set of benchmarking instances highlighting the difference in algorithms' performance. In this paper, we evolve diverse benchmarking instances for chance-constrained optimization problems that contain stochastic components characterized by their expected values and variances. These instances clearly differentiate the performance of two given algorithms, meaning they are easy to solve by one algorithm and hard to solve by the other. We introduce a $(\mu+1)~EA$ for feature-based diversity optimization to evolve such differentiating instances. We study the chance-constrained maximum coverage problem with stochastic weights on the vertices as an example of chance-constrained optimization problems. The experimental results demonstrate that our method successfully generates diverse instances based on different features while effectively distinguishing the performance between a pair of algorithms.
Related papers
- Benchmarking Randomized Optimization Algorithms on Binary, Permutation, and Combinatorial Problem Landscapes [8.337399973715396]
We evaluate the performance of four randomized optimization algorithms: Randomized Hill Climbing (RHC), Simulated Annealing (SA), Genetic Algorithms (GA), and MIMIC.
We compare these algorithms using a set of benchmark fitness functions that highlight the specific challenges and requirements of each problem category.
Our study analyzes each algorithm's effectiveness based on key performance metrics, including solution quality, convergence speed, computational cost, and robustness.
arXiv Detail & Related papers (2025-01-21T23:13:01Z) - Decomposition of Difficulties in Complex Optimization Problems Using a Bilevel Approach [0.30723404270319693]
Practical optimization problems may contain different kinds of difficulties that are often not tractable if one relies on a particular optimization method.
We propose a decomposition strategy that allows us to apply two approaches at the same time on a complex optimization problem.
arXiv Detail & Related papers (2024-07-03T18:59:17Z) - Effective anytime algorithm for multiobjective combinatorial optimization problems [3.2061579211871383]
A set of efficient solutions that are well-spread in the objective space is preferred to provide the decision maker with a great variety of solutions.
We propose a new exact algorithm for multiobjective optimization combining three novel ideas to enhance the anytime behavior.
arXiv Detail & Related papers (2024-02-06T11:53:44Z) - Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm [4.0814527055582746]
It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
arXiv Detail & Related papers (2023-09-04T06:32:02Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
Most of the real-world problems are multimodal in nature that consists of multiple optimum values.
Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable.
We have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs.
arXiv Detail & Related papers (2022-08-23T16:18:27Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.