Inverting estimating equations for causal inference on quantiles
- URL: http://arxiv.org/abs/2401.00987v2
- Date: Wed, 14 Aug 2024 22:59:46 GMT
- Title: Inverting estimating equations for causal inference on quantiles
- Authors: Chao Cheng, Fan Li,
- Abstract summary: We generalize a class of causal inference solutions from estimating the mean of the potential outcome to its quantiles.
A broad implication of our results is that one can rework the existing result for mean causal estimands to facilitate causal inference on quantiles.
- Score: 7.801213477601286
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The causal inference literature frequently focuses on estimating the mean of the potential outcome, whereas quantiles of the potential outcome may carry important additional information. We propose a unified approach, based on the inverse estimating equations, to generalize a class of causal inference solutions from estimating the mean of the potential outcome to its quantiles. We assume that a moment function is available to identify the mean of the threshold-transformed potential outcome, based on which a convenient construction of the estimating equation of quantiles of potential outcome is proposed. In addition, we give a general construction of the efficient influence functions of the mean and quantiles of potential outcomes, and explicate their connection. We motivate estimators for the quantile estimands with the efficient influence function, and develop their asymptotic properties when either parametric models or data-adaptive machine learners are used to estimate the nuisance functions. A broad implication of our results is that one can rework the existing result for mean causal estimands to facilitate causal inference on quantiles. Our general results are illustrated by several analytical and numerical examples.
Related papers
- Graph-based Complexity for Causal Effect by Empirical Plug-in [56.14597641617531]
This paper focuses on the computational complexity of computing empirical plug-in estimates for causal effect queries.
We show that computation can be done efficiently, potentially in time linear in the data size, depending on the estimand's hypergraph.
arXiv Detail & Related papers (2024-11-15T07:42:01Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Feature selection in stratification estimators of causal effects:
lessons from potential outcomes, causal diagrams, and structural equations [0.456877715768796]
This approach clarifies the fundamental statistical phenomena underlying many widely-cited results.
Our exposition combines insights from three distinct methodological traditions for studying causal effect estimation.
arXiv Detail & Related papers (2022-09-23T04:20:50Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Data Augmentation in the Underparameterized and Overparameterized
Regimes [7.326504492614808]
We quantify how data augmentation affects the variance and limiting distribution of estimates.
The results confirm some observations made in machine learning practice, but also lead to unexpected findings.
arXiv Detail & Related papers (2022-02-18T11:32:41Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in High Dimensional Settings [0.5735035463793009]
We consider quantile estimation in a semi-supervised setting, characterized by two available data sets.
We propose a family of semi-supervised estimators for the response quantile(s) based on the two data sets.
arXiv Detail & Related papers (2022-01-25T10:02:23Z) - Loss Bounds for Approximate Influence-Based Abstraction [81.13024471616417]
Influence-based abstraction aims to gain leverage by modeling local subproblems together with the 'influence' that the rest of the system exerts on them.
This paper investigates the performance of such approaches from a theoretical perspective.
We show that neural networks trained with cross entropy are well suited to learn approximate influence representations.
arXiv Detail & Related papers (2020-11-03T15:33:10Z) - Nonparametric inverse probability weighted estimators based on the
highly adaptive lasso [0.966840768820136]
Inparametric inverse probability weighted estimators are known to be inefficient and suffer from the curse of dimensionality.
We propose a class of nonparametric inverse probability weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso.
Our developments have broad implications for the construction of efficient inverse probability weighted estimators in large statistical models and a variety of problem settings.
arXiv Detail & Related papers (2020-05-22T17:49:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.