Construction of Pseudo-hermitian matrices describing systems with
balanced loss-gain
- URL: http://arxiv.org/abs/2401.01126v1
- Date: Tue, 2 Jan 2024 09:45:12 GMT
- Title: Construction of Pseudo-hermitian matrices describing systems with
balanced loss-gain
- Authors: Pijush K.Ghosh
- Abstract summary: We present a general construction of pseudo-hermitian matrices in an arbitrary large, but finite dimensional vector space.
The positive-definite metric which ensures reality of the entire spectra of a pseudo-hermitian operator is presented.
We apply the results to construct a generic pseudo-hermitian lattice model of size N with balanced loss-gain.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general construction of pseudo-hermitian matrices in an
arbitrary large, but finite dimensional vector space. The positive-definite
metric which ensures reality of the entire spectra of a pseudo-hermitian
operator, and is used for defining a modified inner-product in the associated
vector space is also presented. The construction for an N dimensional vector
space is based on the generators of SU (N ) in the fundamental representation
and the identity operator. We apply the results to construct a generic
pseudo-hermitian lattice model of size N with balanced loss-gain. The system is
amenable to periodic as well as open boundary conditions and by construction,
admits entirely real spectra along with unitary time-evolution. The tight
binding and Su-Schrieffer-Heeger(SSH) models with nearest neighbour(NN) and
next-nearest neighbour(NNN) interaction with balanced loss-gain appear as
limiting cases.
Related papers
- Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - On the Convergence of Hermitian Dynamic Mode Decomposition [4.028503203417233]
We study the convergence of Hermitian Dynamic Mode Decomposition to the spectral properties of self-adjoint Koopman operators.
We numerically demonstrate our results by applying them to two-dimensional Schr"odinger equations.
arXiv Detail & Related papers (2024-01-06T11:13:16Z) - Canonical Momenta in Digitized SU(2) Lattice Gauge Theory: Definition
and Free Theory [0.0]
Hamiltonian simulations of quantum systems require a finite-dimensional representation of the operators acting on the Hilbert space H.
Here we give a prescription for gauge links and canonical momenta of an SU(2) gauge theory.
We show that the fundamental commutation relations are fulfilled up to discretisation artefacts.
arXiv Detail & Related papers (2023-04-05T09:25:20Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Non-Isometric Quantum Error Correction in Gravity [0.0]
We construct and study an ensemble of non-isometric error correcting codes in a toy model of an evaporating black hole in dilaton gravity.
We show that the typical such code is very likely to preserve pairwise inner products in a set $S$ of states that can be subexponentially large in the microcanonical Hilbert space dimension of the black hole.
arXiv Detail & Related papers (2022-10-24T18:00:00Z) - Neural and spectral operator surrogates: unified construction and
expression rate bounds [0.46040036610482665]
We study approximation rates for deep surrogates of maps between infinite-dimensional function spaces.
Operator in- and outputs from function spaces are assumed to be parametrized by stable, affine representation systems.
arXiv Detail & Related papers (2022-07-11T15:35:14Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Determining non-Abelian topological order from infinite projected
entangled pair states [0.0]
We find numerically symmetries of the iPEPS, represented by infinite matrix product operators (MPO)
A linear structure of the MPO projectors allows for efficient determination for each state its second Renyi topological entanglement entropy.
The algorithm is illustrated by examples of Fibonacci and Ising non-Abelian string net models.
arXiv Detail & Related papers (2020-08-14T14:26:54Z) - Graph Gamma Process Generalized Linear Dynamical Systems [60.467040479276704]
We introduce graph gamma process (GGP) linear dynamical systems to model real multivariate time series.
For temporal pattern discovery, the latent representation under the model is used to decompose the time series into a parsimonious set of multivariate sub-sequences.
We use the generated random graph, whose number of nonzero-degree nodes is finite, to define both the sparsity pattern and dimension of the latent state transition matrix.
arXiv Detail & Related papers (2020-07-25T04:16:34Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Quantum Geometric Confinement and Dynamical Transmission in Grushin
Cylinder [68.8204255655161]
We classify the self-adjoint realisations of the Laplace-Beltrami operator minimally defined on an infinite cylinder.
We retrieve those distinguished extensions previously identified in the recent literature, namely the most confining and the most transmitting.
arXiv Detail & Related papers (2020-03-16T11:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.