NU-Class Net: A Novel Approach for Video Quality Enhancement
- URL: http://arxiv.org/abs/2401.01163v3
- Date: Mon, 3 Jun 2024 16:09:55 GMT
- Title: NU-Class Net: A Novel Approach for Video Quality Enhancement
- Authors: Parham Zilouchian Moghaddam, Mehdi Modarressi, Mohammad Amin Sadeghi,
- Abstract summary: This paper introduces NU-Class Net, an innovative deep-learning model designed to mitigate compression artifacts stemming from lossy compression codecs.
By employing the NU-Class Net, the video encoder within the video-capturing node can reduce output quality, thereby generating low-bit-rate videos.
Experimental results affirm the efficacy of the proposed model in enhancing the perceptible quality of videos, especially those streamed at low bit rates.
- Score: 1.7763979745248648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video content has experienced a surge in popularity, asserting its dominance over internet traffic and Internet of Things (IoT) networks. Video compression has long been regarded as the primary means of efficiently managing the substantial multimedia traffic generated by video-capturing devices. Nevertheless, video compression algorithms entail significant computational demands in order to achieve substantial compression ratios. This complexity presents a formidable challenge when implementing efficient video coding standards in resource-constrained embedded systems, such as IoT edge node cameras. To tackle this challenge, this paper introduces NU-Class Net, an innovative deep-learning model designed to mitigate compression artifacts stemming from lossy compression codecs. This enhancement significantly elevates the perceptible quality of low-bit-rate videos. By employing the NU-Class Net, the video encoder within the video-capturing node can reduce output quality, thereby generating low-bit-rate videos and effectively curtailing both computation and bandwidth requirements at the edge. On the decoder side, which is typically less encumbered by resource limitations, NU-Class Net is applied after the video decoder to compensate for artifacts and approximate the quality of the original video. Experimental results affirm the efficacy of the proposed model in enhancing the perceptible quality of videos, especially those streamed at low bit rates.
Related papers
- When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.44822009714461]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.
During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.
Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Deep Learning-Based Real-Time Quality Control of Standard Video
Compression for Live Streaming [31.285983939625098]
Real-time deep learning-based H.264 controller is proposed.
It estimates optimal encoder parameters based on the content of a video chunk with minimal delay.
It achieves improvements of up to 2.5 times in average bandwidth usage.
arXiv Detail & Related papers (2023-11-21T18:28:35Z) - CaDM: Codec-aware Diffusion Modeling for Neural-enhanced Video Streaming [15.115975994657514]
We present Codec-aware Diffusion Modeling (CaDM), a novel Neural-enhanced Video Streaming (NVS) paradigm.
First, CaDM improves the encoder's compression efficiency by simultaneously reducing resolution and color bit-depth video frames.
arXiv Detail & Related papers (2022-11-15T05:14:48Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Efficient Video Compression via Content-Adaptive Super-Resolution [11.6624528293976]
Video compression is a critical component of Internet video delivery.
Recent work has shown that deep learning techniques can rival or outperform human algorithms.
This paper presents a new approach that augments a recent deep learning-based video compression scheme.
arXiv Detail & Related papers (2021-04-06T07:01:06Z) - Ultra-low bitrate video conferencing using deep image animation [7.263312285502382]
We propose a novel deep learning approach for ultra-low video compression for video conferencing applications.
We employ deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side.
arXiv Detail & Related papers (2020-12-01T09:06:34Z) - Learning to Compress Videos without Computing Motion [39.46212197928986]
We propose a new deep learning video compression architecture that does not require motion estimation.
Our framework exploits the regularities inherent to video motion, which we capture by using displaced frame differences as video representations.
Our experiments show that our compression model, which we call the MOtionless VIdeo Codec (MOVI-Codec), learns how to efficiently compress videos without computing motion.
arXiv Detail & Related papers (2020-09-29T15:49:25Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
We propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network.
In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides.
arXiv Detail & Related papers (2020-03-04T09:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.