論文の概要: Zero-Shot Position Debiasing for Large Language Models
- arxiv url: http://arxiv.org/abs/2401.01218v1
- Date: Tue, 2 Jan 2024 14:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 13:49:59.935454
- Title: Zero-Shot Position Debiasing for Large Language Models
- Title(参考訳): 大規模言語モデルにおけるゼロショット位置偏差
- Authors: Zhongkun Liu, Zheng Chen, Mengqi Zhang, Zhaochun Ren, Zhumin Chen,
Pengjie Ren
- Abstract要約: 大規模言語モデル(LLM)における位置バイアスを軽減するため,ゼロショット位置バイアス(ZOE)フレームワークを提案する。
ZOEは4種類の位置バイアスを緩和する既存の手法より一貫して優れている。
- 参考スコア(独自算出の注目度): 41.601823886414294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning has been demonstrated to be an effective method to improve the
domain performance of large language models (LLMs). However, LLMs might fit the
dataset bias and shortcuts for prediction, leading to poor generation
performance. Experimental result shows that LLMs are prone to exhibit position
bias, i.e., leveraging information positioned at the beginning or end, or
specific positional cues within the input. Existing works on mitigating
position bias require external bias knowledge or annotated non-biased samples,
which is unpractical in reality. In this work, we propose a zero-shot position
debiasing (ZOE) framework to mitigate position bias for LLMs. ZOE leverages
unsupervised responses from pre-trained LLMs for debiasing, thus without any
external knowledge or datasets. To improve the quality of unsupervised
responses, we propose a master-slave alignment (MSA) module to prune these
responses. Experiments on eight datasets and five tasks show that ZOE
consistently outperforms existing methods in mitigating four types of position
biases. Besides, ZOE achieves this by sacrificing only a small performance on
biased samples, which is simple and effective.
- Abstract(参考訳): ファインチューニングは、大規模言語モデル(LLM)のドメイン性能を改善する効果的な手法であることが示されている。
しかし、LLMはデータセットバイアスと予測のショートカットに適合し、世代パフォーマンスが低下する可能性がある。
実験の結果、LSMは位置バイアスを示す傾向があり、すなわち、入力の先頭または端に位置する情報、あるいは入力内の特定の位置手がかりを利用することが示された。
位置バイアスの緩和に関する既存の研究は、外部バイアス知識や注釈のない非バイアスサンプルを必要とする。
本研究では,LLMの位置バイアスを軽減するため,ゼロショット位置バイアス(ZOE)フレームワークを提案する。
ZOEは、事前訓練されたLLMからの教師なしの応答を利用してデバイアスを発生させる。
教師なし応答の品質を向上させるため,これらの応答を誘発するマスタ-スレーブアライメント(MSA)モジュールを提案する。
8つのデータセットと5つのタスクの実験により、ZOEは4種類の位置バイアスを緩和する既存の手法より一貫して優れていることが示された。
さらに、ZOEは偏りのあるサンプルに対して小さなパフォーマンスしか犠牲にせず、シンプルで効果的である。
関連論文リスト
- Causal-Guided Active Learning for Debiasing Large Language Models [40.853803921563596]
現在の生成型大規模言語モデル(LLM)は、それでもデータセットバイアスを捕捉し、生成に利用することができる。
従来の知識に基づくデバイアス法や微調整に基づくデバイアス法は、現在のLCMには適さない可能性がある。
LLM自体を利用して情報バイアスされたサンプルを自動かつ自律的に識別し,バイアスパターンを誘導する,カジュアル誘導型アクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T09:46:15Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な役割を担っているが、バイアスの持続可能性には重大な懸念がある。
本稿では、英語テキストにおけるジェンダー、人種、宗教的偏見を緩和するために、DPO(Direct Preference Optimization)を用いた新しい枠組みを提案する。
バイアスのある完了よりもバイアスの少ない損失関数を開発することで、我々のアプローチは敬意と非差別的な言語を好む。
論文 参考訳(メタデータ) (2024-07-18T22:32:20Z) - UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation [12.04811490937078]
フィードフォワードニューラルネットワーク(FFN)とアテンションヘッドが大規模言語モデル(LLM)のバイアスをもたらすかを検討する。
これらのバイアスを軽減するために,推定のみの手法であるUniBiasを導入し,バイアス付きFFNベクトルとアテンションヘッドを効果的に識別・除去する。
論文 参考訳(メタデータ) (2024-05-31T03:59:15Z) - Position-Aware Parameter Efficient Fine-Tuning Approach for Reducing Positional Bias in LLMs [18.832135309689736]
大規模言語モデル(LLM)の最近の進歩は、長い入力コンテキストを処理する能力を高めている。
近年の研究では、LCMの位置バイアスが示されており、有用な情報の位置に応じて様々な性能を示す。
本研究では,データ拡張手法と効率的なパラメータアダプタを組み合わせた位置認識型PAPEFTアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-01T19:04:17Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - The Gaps between Pre-train and Downstream Settings in Bias Evaluation
and Debiasing [74.7319697510621]
In-Context Learning (ICL)は、FTベースのデバイアス法と比較して、PLMの変更を小さくする。
ICL-based debiasing method is a higher correlation between intrinsic and extrinsic bias scores than FT-based method。
論文 参考訳(メタデータ) (2024-01-16T17:15:08Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。