論文の概要: Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data
- arxiv url: http://arxiv.org/abs/2408.11247v2
- Date: Tue, 27 Aug 2024 02:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 18:28:54.280588
- Title: Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data
- Title(参考訳): 業務用バイアスのアンボックス化:米国労働データによるLCMの基盤的デバイアス化
- Authors: Atmika Gorti, Manas Gaur, Aman Chadha,
- Abstract要約: 大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
- 参考スコア(独自算出の注目度): 9.90951705988724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、トレーニングデータに埋め込まれた社会的バイアスを継承し、増幅する傾向があり、性別、職業、その他のセンシティブなカテゴリーに関連する有害なステレオタイプを補強する可能性がある。
偏見のあるLCMは、不公平な慣行や、採用、オンラインコンテンツモデレーション、刑事司法制度など、さまざまな領域における社会的不平等の悪化につながるため、この問題は特に問題となる。
従来の研究では、固有のバイアスを強調するために設計された特別なデータセットを使用してLCMのバイアスを検出することに焦点が当てられていたが、アメリカ労働統計局(NBLS)などの権威的なデータセットとどのように相関するかについて、注目すべき研究が欠如している。
このギャップに対処するため,我々は,NBLSデータから得られた分布と生成した出力がどのように比較されるかを分析し,LLMを<bias-out-of-the-box>設定で評価する経験的研究を行った。
さらに,NBLSインスタンスを直接組み込んでLLM内のバイアスを緩和する,単純かつ効果的な脱バイアス機構を提案する。
我々の研究は、インストラクタブル(instructable)、ベース(base)、ミックス・オブ・エキスパート(mixed-of-expert)のモデルを含む7つの異なるLLMにまたがっており、既存のバイアス検出技術によって見落とされがちなバイアスのかなりのレベルを明らかにしている。
重要なことは、外部データセットに依存しないデバイアス法は、バイアススコアを大幅に削減し、より公平で信頼性の高いLCMを作成するためのアプローチの有効性を強調している。
関連論文リスト
- Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions [25.809599403713506]
大規模言語モデル(LLM)は、社会をシミュレートし、多様な社会的タスクを実行するために、多くの研究で採用されている。
LLMは、人為的なデータに曝されるため、社会的偏見に影響を受けやすい。
本研究では,多エージェントLDM相互作用における性バイアスの存在について検討し,これらのバイアスを軽減するための2つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-03T15:28:05Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Promoting Equality in Large Language Models: Identifying and Mitigating the Implicit Bias based on Bayesian Theory [29.201402717025335]
大規模言語モデル(LLM)は、必然的にバイアスのある情報を含む広範なテキストコーパスで訓練される。
我々は、暗黙のバイアス問題を正式に定義し、ベイズ理論に基づくバイアス除去のための革新的な枠組みを開発した。
論文 参考訳(メタデータ) (2024-08-20T07:40:12Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
論文 参考訳(メタデータ) (2024-08-13T02:08:32Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
大規模言語モデル(LLM)におけるバイアスの存在と性質について検討する。
LLMが特に政治的バイアス予測やテキスト継続タスクにおいてバイアスを示すかどうかを調査する。
我々は,素早い工学とモデル微調整を含む脱バイアス戦略を提案する。
論文 参考訳(メタデータ) (2024-03-22T00:59:48Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Confronting LLMs with Traditional ML: Rethinking the Fairness of Large Language Models in Tabular Classifications [23.963586791210414]
大規模言語モデル (LLM) は, 学習データから社会的偏見を継承する傾向にあり, 分類作業における公平性に大きな影響を及ぼすことを示した。
この観察は、社会的バイアスがLSM自体に固有のものであり、事前学習されたコーパスから継承されていることを強調している。
論文 参考訳(メタデータ) (2023-10-23T06:31:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。