PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
- URL: http://arxiv.org/abs/2211.11546v1
- Date: Mon, 21 Nov 2022 15:08:35 GMT
- Title: PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
- Authors: Nikita Durasov, Nik Dorndorf, Pascal Fua
- Abstract summary: We show that it is more effective to select not only the images to be annotated but also a subset of tasks for which to provide annotations at each Active Learning (AL)
We demonstrate the effectiveness of our approach on several popular multi-task datasets.
- Score: 57.08386016411536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning is central to many real-world applications.
Unfortunately, obtaining labelled data for all tasks is time-consuming,
challenging, and expensive. Active Learning (AL) can be used to reduce this
burden. Existing techniques typically involve picking images to be annotated
and providing annotations for all tasks.
In this paper, we show that it is more effective to select not only the
images to be annotated but also a subset of tasks for which to provide
annotations at each AL iteration. Furthermore, the annotations that are
provided can be used to guess pseudo-labels for the tasks that remain
unannotated. We demonstrate the effectiveness of our approach on several
popular multi-task datasets.
Related papers
- Leveraging knowledge distillation for partial multi-task learning from multiple remote sensing datasets [2.1178416840822023]
Partial multi-task learning where training examples are annotated for one of the target tasks is a promising idea in remote sensing.
This paper proposes using knowledge distillation to replace the need of ground truths for the alternate task and enhance the performance of such approach.
arXiv Detail & Related papers (2024-05-24T09:48:50Z) - Joint-Task Regularization for Partially Labeled Multi-Task Learning [30.823282043129552]
Multi-task learning has become increasingly popular in the machine learning field, but its practicality is hindered by the need for large, labeled datasets.
We propose Joint-Task Regularization (JTR), an intuitive technique which leverages cross-task relations to simultaneously regularize all tasks in a single joint-task latent space.
arXiv Detail & Related papers (2024-04-02T14:16:59Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
The study of multi-task learning has drawn great attention from the community.
Despite the remarkable progress, the challenge of optimally learning different tasks simultaneously remains to be explored.
Previous works attempt to modify the gradients from different tasks. Yet these methods give a subjective assumption of the relationship between tasks, and the modified gradient may be less accurate.
In this paper, we introduce Task Allocation(STA), a mechanism that addresses this issue by a task allocation approach, in which each sample is randomly allocated a subset of tasks.
For further progress, we propose Interleaved Task Allocation(ISTA) to iteratively allocate all
arXiv Detail & Related papers (2022-03-06T11:57:18Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
We propose a novel semi-supervised algorithm, termed as Multi-Task Multi-View learning based on Common and Special Features (MTMVCSF)
An anti-noise multi-task multi-view algorithm called AN-MTMVCSF is proposed, which has a strong adaptability to noise labels.
The effectiveness of these algorithms is proved by a series of well-designed experiments on both real world and synthetic data.
arXiv Detail & Related papers (2022-01-15T11:26:28Z) - Learning Multi-Tasks with Inconsistent Labels by using Auxiliary Big
Task [24.618094251341958]
Multi-task learning is to improve the performance of the model by transferring and exploiting common knowledge among tasks.
We propose a framework to learn these tasks by jointly leveraging both abundant information from a learnt auxiliary big task with sufficiently many classes to cover those of all these tasks.
Our experimental results demonstrate its effectiveness in comparison with the state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-07T02:46:47Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.