論文の概要: The Adobe Hidden Feature and its Impact on Sensor Attribution
- arxiv url: http://arxiv.org/abs/2401.01366v1
- Date: Tue, 26 Dec 2023 10:47:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 10:39:12.026657
- Title: The Adobe Hidden Feature and its Impact on Sensor Attribution
- Title(参考訳): Adobeの隠れた機能とセンサー属性への影響
- Authors: Jan Butora, Patrick Bas,
- Abstract要約: いくつかのセンサーから得られた画像は、共通の「リーク」を提示することで偽陽性(FP)を生成する傾向があった。
また, 生画像から8ビット符号化画像まで, ウォーターマークと非常によく似た周期的な128×128パターンが組み込まれていることを示す。
FPを提示するカメラでは、偽陽性者を防ぐことができた。
- 参考スコア(独自算出の注目度): 15.5768790532133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: If the extraction of sensor fingerprints represents nowadays an important forensic tool for sensor attribution, it has been shown recently that images coming from several sensors were more prone to generate False Positives (FP) by presenting a common "leak". In this paper, we investigate the possible cause of this leak and after inspecting the EXIF metadata of the sources causing FP, we found out that they were related to the Adobe Lightroom or Photoshop softwares. The cross-correlation between residuals on images presenting FP reveals periodic peaks showing the presence of a periodic pattern. By developing our own images with Adobe Lightroom we are able to show that all developments from raw images (or 16 bits per channel coded) to 8 bits-coded images also embed a periodic 128x128 pattern very similar to a watermark. However, we also show that the watermark depends on both the content and the architecture used to develop the image. The rest of the paper presents two different ways of removing this watermark, one by removing it from the image noise component, and the other by removing it in the pixel domain. We show that for a camera presenting FP, we were able to prevent the False Positives. A discussion with Adobe representatives informed us that the company decided to add this pattern in order to induce dithering.
- Abstract(参考訳): センサ指紋の抽出が今日では、センサ属性の重要な法医学的ツールとなっている場合、いくつかのセンサーから得られる画像は、共通の「リーク」を提示することで、偽陽性(FP)を生成する傾向にあることが最近示されている。
本稿では,この漏洩の原因について検討し,FPの原因となるソースのEXIFメタデータを検査した結果,Adobe LightroomやPhotoshopソフトウェアと関係があることが判明した。
FPを示す画像上の残差の相互相関は、周期的なパターンの存在を示す周期的なピークを示す。
Adobe Lightroomを使って独自の画像を開発することで、生画像(またはチャネルコード毎の16ビット)から8ビットの符号化画像まで、ウォーターマークと非常によく似た周期的な128x128パターンを埋め込むことができる。
しかし、この透かしは、画像の開発に使用される内容とアーキテクチャの両方に依存していることも示している。
この透かしを画像ノイズ成分から取り除く方法と、画素領域で取り除く方法との2つの方法を示す。
FPを提示するカメラでは、偽陽性者を防ぐことができた。
Adobeの代表者による議論によると、同社はディザリングを誘発するためにこのパターンを追加することにした。
関連論文リスト
- Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models [10.726987194250116]
拡散モデル出力にロバストで見えない透かしを埋め込む新しい透かし技術であるShallow Diffuseを導入する。
我々の理論的および経験的分析により,浅度拡散はデータ生成の一貫性と透かしの検出可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-10-28T14:51:04Z) - Are Watermarks Bugs for Deepfake Detectors? Rethinking Proactive Forensics [14.596038695008403]
現在の透かしモデルは、もともと本物の画像のために考案されたもので、偽造画像に直接適用した場合、デプロイされたディープフェイク検出器に害を与える可能性があると我々は主張する。
本稿では,能動的法医学を代表としてAdvMarkを提案し,受動検出器の対角的脆弱性を有効に活用する。
論文 参考訳(メタデータ) (2024-04-27T11:20:49Z) - A self-supervised CNN for image watermark removal [102.94929746450902]
画像透かし除去(SWCNN)における自己教師型畳み込みニューラルネットワーク(CNN)を提案する。
SWCNNは、透かし分布に従って、ペアのトレーニングサンプルではなく、基準透かし画像を構築するために、自己教師付き方式を使用している。
テクスチャ情報を考慮すると、画像透かし除去の視覚効果を改善するために混合損失を利用する。
論文 参考訳(メタデータ) (2024-03-09T05:59:48Z) - Perceptive self-supervised learning network for noisy image watermark
removal [59.440951785128995]
雑音の多い画像透かし除去のための知覚的自己教師型学習ネットワーク(PSLNet)を提案する。
提案手法は,雑音の多い画像透かし除去のための一般的な畳み込みニューラルネットワーク(CNN)と比較して非常に効果的である。
論文 参考訳(メタデータ) (2024-03-04T16:59:43Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
生成モデルのアウトプットを透かしは、著作権をトレースし、AI生成コンテンツによる潜在的な害を防ぐ重要なテクニックである。
本稿では,拡散モデル出力を頑健にフィンガープリントするTree-Ring Watermarkingという新しい手法を提案する。
私たちの透かしは画像空間に意味的に隠れており、現在デプロイされている透かしよりもはるかに堅牢です。
論文 参考訳(メタデータ) (2023-05-31T17:00:31Z) - Supervised GAN Watermarking for Intellectual Property Protection [33.827150843939094]
本稿では,GAN(Generative Adversarial Networks)のための透かし手法を提案する。
目的は、GANモデルで生成された画像が見えない透かし(署名)を含むように、GANモデルに透かしを付けることである。
その結果,本手法は生成画像内に見えない透かしを効果的に埋め込むことができることがわかった。
論文 参考訳(メタデータ) (2022-09-07T20:52:05Z) - WDNet: Watermark-Decomposition Network for Visible Watermark Removal [61.14614115654322]
透かしのサイズ、形状、色、透明さの不確かさは、画像から画像への翻訳技術にとって大きな障壁となった。
従来の透かし画像分解を2段発電機(WDNet(Watermark-Decomposition Network))に組み合わせます。
分解製剤は、WDNetが単に削除するのではなく、画像から透かしを分離することができます。
論文 参考訳(メタデータ) (2020-12-14T15:07:35Z) - Split then Refine: Stacked Attention-guided ResUNets for Blind Single
Image Visible Watermark Removal [69.92767260794628]
従来の透かし除去方法は,ユーザから透かしの位置を取得したり,マルチタスクネットワークをトレーニングして,背景を無差別に復元する必要があった。
本稿では,注目誘導型ResUNetsを積み重ねた新しい2段階フレームワークを提案し,検出・除去・精錬の過程をシミュレートする。
様々な条件下で4つの異なるデータセット上でアルゴリズムを広範囲に評価し,その手法が他の最先端手法をはるかに上回っていることを示す実験を行った。
論文 参考訳(メタデータ) (2020-12-13T09:05:37Z) - A leak in PRNU based source identification. Questioning fingerprint
uniqueness [75.33542585238497]
Photo Response Non-Uniformity (PRNU) は、画像ソース属性タスクにおいて最も効果的なトレースであると考えられている。
近年のデバイスは、PRNUノイズの識別性を低下させる非特異なアーティファクトを導入する可能性がある。
誤報率の主な原因は、特定のカメラモデル、ファームウェア、画像の内容に直接関連しないことを示す。
論文 参考訳(メタデータ) (2020-09-10T14:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。