論文の概要: Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models
- arxiv url: http://arxiv.org/abs/2410.21088v1
- Date: Mon, 28 Oct 2024 14:51:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:10.810251
- Title: Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models
- Title(参考訳): 浅拡散:拡散モデルにおける低次元部分空間によるロバストで見えない透かし
- Authors: Wenda Li, Huijie Zhang, Qing Qu,
- Abstract要約: 拡散モデル出力にロバストで見えない透かしを埋め込む新しい透かし技術であるShallow Diffuseを導入する。
我々の理論的および経験的分析により,浅度拡散はデータ生成の一貫性と透かしの検出可能性を大幅に向上させることが示された。
- 参考スコア(独自算出の注目度): 10.726987194250116
- License:
- Abstract: The widespread use of AI-generated content from diffusion models has raised significant concerns regarding misinformation and copyright infringement. Watermarking is a crucial technique for identifying these AI-generated images and preventing their misuse. In this paper, we introduce Shallow Diffuse, a new watermarking technique that embeds robust and invisible watermarks into diffusion model outputs. Unlike existing approaches that integrate watermarking throughout the entire diffusion sampling process, Shallow Diffuse decouples these steps by leveraging the presence of a low-dimensional subspace in the image generation process. This method ensures that a substantial portion of the watermark lies in the null space of this subspace, effectively separating it from the image generation process. Our theoretical and empirical analyses show that this decoupling strategy greatly enhances the consistency of data generation and the detectability of the watermark. Extensive experiments further validate that our Shallow Diffuse outperforms existing watermarking methods in terms of robustness and consistency. The codes will be released at https://github.com/liwd190019/Shallow-Diffuse.
- Abstract(参考訳): 拡散モデルからのAI生成コンテンツの普及は、誤情報や著作権侵害に関する重大な懸念を引き起こしている。
ウォーターマーキングは、これらのAI生成画像を特定し、その誤用を防ぐための重要なテクニックである。
本稿では,拡散モデル出力に頑健で見えない透かしを埋め込む新しい透かし手法であるShallow Diffuseを紹介する。
拡散サンプリングプロセス全体を通して透かしを統合する既存のアプローチとは異なり、Shallow Diffuseは画像生成プロセスにおける低次元部分空間の存在を利用してこれらのステップを分離する。
この方法は、透かしのかなりの部分がこの部分空間のヌル空間にあることを保証し、画像生成プロセスから効果的に分離する。
この分離戦略は,データ生成の一貫性と透かしの検出可能性を大幅に向上させることを示す。
過度な実験により、我々は既存の透かし法よりも頑健さと一貫性が優れていることが確認された。
コードはhttps://github.com/liwd190019/Shallow-Diffuse.comで公開される。
関連論文リスト
- Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
安定拡散のようなテキストと画像の拡散モデルは、高品質な画像を生成するのに例外的な可能性を示している。
近年の研究では、これらのモデルのトレーニングに不正データを使用することが懸念されており、知的財産権侵害やプライバシー侵害につながる可能性がある。
本稿では,テキスト・ツー・イメージ・モデルに適用された様々な透かしに基づく保護手法のロバスト性について検討する。
論文 参考訳(メタデータ) (2024-11-22T22:28:19Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARKは、コントラスト学習による堅牢性を高める、第一級の透かし技術である。
本評価の結果,JIGMARKは既存の透かし法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:31:41Z) - DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model [15.982765272033058]
潜在拡散モデル(LDM)は幅広い応用を可能にするが、違法利用に関する倫理的懸念を提起する。
DiffuseTraceと呼ばれる新しいテクニックは、すべての生成された画像に見えない透かしを埋め込んで、将来的な検出を意味づける。
論文 参考訳(メタデータ) (2024-05-04T15:32:57Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
著作権保護と不適切なコンテンツ生成は、拡散モデルの実装に課題をもたらす。
本研究では,性能ロスレスかつトレーニング不要な拡散モデル透かし手法を提案する。
論文 参考訳(メタデータ) (2024-04-07T13:30:10Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
論文 参考訳(メタデータ) (2023-10-03T19:50:08Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
我々は、透かしやディープフェイク検出器を含む様々なAI画像検出器の堅牢性を分析する。
ウォーターマーキング手法は,攻撃者が実際の画像をウォーターマーキングとして識別することを目的としたスプーフ攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2023-09-29T18:30:29Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
生成モデルのアウトプットを透かしは、著作権をトレースし、AI生成コンテンツによる潜在的な害を防ぐ重要なテクニックである。
本稿では,拡散モデル出力を頑健にフィンガープリントするTree-Ring Watermarkingという新しい手法を提案する。
私たちの透かしは画像空間に意味的に隠れており、現在デプロイされている透かしよりもはるかに堅牢です。
論文 参考訳(メタデータ) (2023-05-31T17:00:31Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。