論文の概要: To Diverge or Not to Diverge: A Morphosyntactic Perspective on Machine
Translation vs Human Translation
- arxiv url: http://arxiv.org/abs/2401.01419v1
- Date: Tue, 2 Jan 2024 20:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-04 15:44:09.077476
- Title: To Diverge or Not to Diverge: A Morphosyntactic Perspective on Machine
Translation vs Human Translation
- Title(参考訳): 発散する、または発散しない:機械翻訳と人間の翻訳における形態素的視点
- Authors: Jiaming Luo, Colin Cherry, George Foster
- Abstract要約: ヒト翻訳(HT)に対する機械翻訳(MT)の大規模比較分析を行う。
3つの言語対と2種類の分岐がソースとターゲットの構造的な違いとして定義されるが、MTはHTよりも一貫して保守的である。
以上の結果から,HTはMT性能の低下と相関することが明らかとなった。
- 参考スコア(独自算出の注目度): 31.221403346936995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We conduct a large-scale fine-grained comparative analysis of machine
translations (MT) against human translations (HT) through the lens of
morphosyntactic divergence. Across three language pairs and two types of
divergence defined as the structural difference between the source and the
target, MT is consistently more conservative than HT, with less morphosyntactic
diversity, more convergent patterns, and more one-to-one alignments. Through
analysis on different decoding algorithms, we attribute this discrepancy to the
use of beam search that biases MT towards more convergent patterns. This bias
is most amplified when the convergent pattern appears around 50% of the time in
training data. Lastly, we show that for a majority of morphosyntactic
divergences, their presence in HT is correlated with decreased MT performance,
presenting a greater challenge for MT systems.
- Abstract(参考訳): 形態素発散のレンズを通して,機械翻訳(mt)とヒト翻訳(ht)の大規模精密比較分析を行う。
3つの言語対と2種類の発散が、ソースとターゲットの構造的な違いとして定義されるが、MTはHTよりも一貫して保守的であり、モルフォシンタクティックな多様性は少なく、より収束したパターン、より1対1のアライメントを持つ。
異なる復号アルゴリズムの解析を通して、この相違はMTをより収束したパターンに偏るビームサーチによるものである。
このバイアスは、トレーニングデータで収束パターンが約50%の時間に現れる場合に最も増幅される。
最後に,HTにおけるHTの存在はMT性能の低下と相関し,MTシステムにとって大きな課題であることを示す。
関連論文リスト
- The Comparison of Translationese in Machine Translation and Human Transation in terms of Translation Relations [7.776258153133857]
この研究は2つのパラレルコーパスを用いており、それぞれが9つのジャンルにまたがって、同じソーステキストで、1つはNMTによって翻訳され、もう1つは人間によって翻訳された。
以上の結果から,NMTはHTよりも翻訳に大きく依存していることが示唆された。
論文 参考訳(メタデータ) (2024-03-27T19:12:20Z) - Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
この分野のほとんどの研究は、機械翻訳コンポーネントではなく多言語モデルに焦点を当てている。
より強力なMTシステムを用いて、原文のトレーニングと機械翻訳テキストの推論のミスマッチを緩和することにより、翻訳テストは以前想定していたよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:56:10Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
モダリティ間の同調性は、特に認知に影響を及ぼすマルチモーダル融合の課題となる。
本稿では,動的モダリティゲーティング(HCT-DMG)を用いた階層型クロスモーダルトランスを提案する。
HCT-DMG: 1) 従来のマルチモーダルモデルを約0.8Mパラメータで上回り、2) 不整合が認識に影響を及ぼすハードサンプルを認識し、3) 潜在レベルの非整合性をクロスモーダルアテンションで緩和する。
論文 参考訳(メタデータ) (2023-05-23T01:24:15Z) - Understanding and Bridging the Modality Gap for Speech Translation [11.13240570688547]
マルチタスク学習は、機械翻訳(MT)とエンドツーエンド音声翻訳(ST)の間で知識を共有する効果的な方法の1つである。
しかし、音声とテキストの違いにより、STとMTの間には常にギャップがある。
本稿では,まず,このモダリティギャップを対象側の表現差から理解し,そのモダリティギャップとニューラルマシン翻訳における他のよく知られた問題,すなわち露出バイアスを関連付けることを目的とする。
論文 参考訳(メタデータ) (2023-05-15T15:09:18Z) - On the Pareto Front of Multilingual Neural Machine Translation [123.94355117635293]
我々は、ニューラルネットワーク翻訳(MNMT)におけるサンプリング比によって、与えられた方向の性能がどう変化するかを検討する。
我々は,MNMTにおけるユニークなパフォーマンストレードオフフロントを予測するために,ダブルパワー法を提案する。
本実験では, トレーニング予算の1/5から1/2に過ぎず, 温度探索法や勾配操作法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2023-04-06T16:49:19Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
マルチモーダル機械翻訳は、視覚などの他のモーダルからの情報を取り入れることで、翻訳品質を向上させることを目的としている。
従来のMMTシステムは主に視覚情報へのアクセスと利用に重点を置いており、画像関連データセット上でそれらの手法を検証する傾向がある。
本稿では,MTのための新しい手法と新しいデータセットを確立する。
論文 参考訳(メタデータ) (2022-12-20T15:02:38Z) - Tackling Ambiguity with Images: Improved Multimodal Machine Translation
and Contrastive Evaluation [72.6667341525552]
本稿では,ニューラルアダプターとガイド付き自己注意機構を用いた,強いテキストのみのMTモデルに基づく新しいMT手法を提案する。
また,不明瞭な文とその翻訳が可能なコントラスト型多モーダル翻訳評価セットであるCoMMuTEについても紹介する。
提案手法は, 標準英語-フランス語, 英語-ドイツ語, 英語-チェコ語のベンチマークにおいて, 強いテキストのみのモデルと比較して, 競争力のある結果が得られる。
論文 参考訳(メタデータ) (2022-12-20T10:18:18Z) - Beyond Noise: Mitigating the Impact of Fine-grained Semantic Divergences
on Neural Machine Translation [14.645468999921961]
本研究は,トランスフォーマーモデルにおける様々な種類の細粒度セマンティックな違いの影響を解析する。
自然に発生する発散による劣化からNMTが回復するのに役立つ因子を用いた発散型NMTフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-31T16:15:35Z) - Machine Translationese: Effects of Algorithmic Bias on Linguistic
Complexity in Machine Translation [2.0625936401496237]
我々は、機械翻訳におけるジェンダーの研究を超えて、偏見の増幅がより広い意味で言語に与える影響を調査する。
我々は、異なるデータ駆動MTパラダイムによって生成された翻訳の言語的豊かさ(語彙的および形態学的レベルで)を評価する。
論文 参考訳(メタデータ) (2021-01-30T18:49:11Z) - Unsupervised Multimodal Neural Machine Translation with Pseudo Visual
Pivoting [105.5303416210736]
非教師なし機械翻訳(MT)は、最近モノリンガルコーパスのみを用いて印象的な結果を得た。
ソースターゲットの文を潜時空間で関連付けることは依然として困難である。
異なる言語が生物学的に類似の視覚システムを共有しているため、視覚的コンテンツを通してより良いアライメントを達成する可能性は有望である。
論文 参考訳(メタデータ) (2020-05-06T20:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。