論文の概要: Practical Guidelines for the Selection and Evaluation of Natural Language Processing Techniques in Requirements Engineering
- arxiv url: http://arxiv.org/abs/2401.01508v2
- Date: Thu, 2 May 2024 19:33:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 17:37:33.046605
- Title: Practical Guidelines for the Selection and Evaluation of Natural Language Processing Techniques in Requirements Engineering
- Title(参考訳): 要求工学における自然言語処理技術の選択と評価に関する実践的ガイドライン
- Authors: Mehrdad Sabetzadeh, Chetan Arora,
- Abstract要約: 自然言語(NL)は現在、要求自動化の基盤となっている。
多くの異なるNLPソリューション戦略が利用可能であるため、特定のREタスクに対して適切な戦略を選択することは困難である。
特に,従来のNLP,特徴ベース機械学習,言語モデルに基づく手法など,さまざまな戦略を選択する方法について議論する。
- 参考スコア(独自算出の注目度): 8.779031107963942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: [Context and Motivation] Natural Language Processing (NLP) is now a cornerstone of requirements automation. One compelling factor behind the growing adoption of NLP in Requirements Engineering (RE) is the prevalent use of natural language (NL) for specifying requirements in industry. NLP techniques are commonly used for automatically classifying requirements, extracting important information, e.g., domain models and glossary terms, and performing quality assurance tasks, such as ambiguity handling and completeness checking. With so many different NLP solution strategies available and the possibility of applying machine learning alongside, it can be challenging to choose the right strategy for a specific RE task and to evaluate the resulting solution in an empirically rigorous manner. [Content] In this chapter, we present guidelines for the selection of NLP techniques as well as for their evaluation in the context of RE. In particular, we discuss how to choose among different strategies such as traditional NLP, feature-based machine learning, and language-model-based methods. [Contribution] Our ultimate hope for this chapter is to serve as a stepping stone, assisting newcomers to NLP4RE in quickly initiating themselves into the NLP technologies most pertinent to the RE field.
- Abstract(参考訳): [コンテキストとモチベーション] 自然言語処理(NLP)が要求自動化の基盤となりました。
要求工学(RE)におけるNLPの採用の増加の背景にある重要な要因の1つは、業界における要求を特定するために自然言語(NL)が普及していることである。
NLP技術は、要求を自動的に分類し、重要な情報、例えばドメインモデルや用語を抽出し、曖昧性処理や完全性チェックなどの品質保証タスクを実行するために一般的に用いられる。
多くの異なるNLPソリューション戦略が利用可能であり、機械学習を同時に適用することが可能であるため、特定のREタスクの適切な戦略を選択し、結果のソリューションを経験的に厳密な方法で評価することは困難である。
[内容]本章では,NLP技術の選択に関するガイドラインと,REの文脈における評価について述べる。
特に,従来のNLP,特徴ベース機械学習,言語モデルに基づく手法など,さまざまな戦略を選択する方法について議論する。
[貢献]この章の究極の希望は、NLP4REへの新規参入者を支援し、RE分野に最も関係のあるNLP技術に迅速に参入することである。
関連論文リスト
- Natural Language Processing for Requirements Traceability [47.93107382627423]
トレーサビリティは、特に安全クリティカルなシステムにおいて、要件とソフトウェアエンジニアリングにおいて重要な役割を果たす。
自然言語処理(NLP)とその関連技術は、過去10年間に大きく進歩してきた。
論文 参考訳(メタデータ) (2024-05-17T15:17:00Z) - Lessons from the Use of Natural Language Inference (NLI) in Requirements Engineering Tasks [3.7236121078812485]
要求工学タスクの自動化における自然言語推論(NLI)の利用について検討する。
特に、要求分類、要求仕様の欠陥の特定、利害関係者の要求における矛盾の検出という3つのタスクに重点を置いています。
論文 参考訳(メタデータ) (2024-04-24T20:26:48Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Natural Language Processing for Requirements Formalization: How to
Derive New Approaches? [0.32885740436059047]
我々はNLPの分野における主要な考え方と最先端の方法論について論じる。
我々は2つの異なるアプローチを詳細に議論し、ルールセットの反復的開発を強調した。
提案手法は, 自動車分野と鉄道分野の2つの産業分野において実証された。
論文 参考訳(メタデータ) (2023-09-23T05:45:19Z) - Situated Natural Language Explanations [54.083715161895036]
自然言語の説明(NLE)は、人間に意思決定を説明する最もアクセスしやすいツールである。
既存のNLE研究の視点は、観客を考慮に入れない。
Situated NLEは視点を提供し、説明の生成と評価に関するさらなる研究を促進する。
論文 参考訳(メタデータ) (2023-08-27T14:14:28Z) - Requirement Formalisation using Natural Language Processing and Machine
Learning: A Systematic Review [11.292853646607888]
我々は,要求工学におけるNLP技術とML技術の現状を概説するために,体系的な文献レビューを行った。
NLPアプローチは、構造化データと半構造化データに対する一次操作である自動RFに使用される最も一般的なNLP手法であることがわかった。
また,本研究では,従来のML技術が研究に大きく貢献する代わりに,Deep Learning(DL)技術が広く用いられていることも明らかにした。
論文 参考訳(メタデータ) (2023-03-18T17:36:21Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z) - The Use of NLP-Based Text Representation Techniques to Support
Requirement Engineering Tasks: A Systematic Mapping Review [1.5469452301122177]
研究の方向性は、語彙的・構文的特徴の使用から高度な埋め込み技術の使用へと変化した。
既存の文献の4つのギャップ、それらが問題となる理由、そして今後の研究がそれらにどう対処し始めるかを特定する。
論文 参考訳(メタデータ) (2022-05-17T02:47:26Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z) - Classification of Natural Language Processing Techniques for
Requirements Engineering [6.099346764207287]
我々は,要求工学において最も頻繁に使用される57のNLPテクニックを合成・整理する取り組みについて述べる。
我々はこれらのNLP手法を2つの方法で分類する: まず、NLPタスクを典型的なパイプラインで、次に、言語分析レベルで分類する。
論文 参考訳(メタデータ) (2022-04-08T20:28:00Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。