論文の概要: DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM
- arxiv url: http://arxiv.org/abs/2401.01545v2
- Date: Sat, 9 Mar 2024 04:47:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 14:52:07.858780
- Title: DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM
- Title(参考訳): DDN-SLAM: リアルタイム高密度ダイナミックニューラルインシシットSLAM
- Authors: Mingrui Li, Yiming Zhou, Guangan Jiang, Tianchen Deng, Yangyang Wang,
Hongyu Wang
- Abstract要約: DDN-SLAMは,意味的特徴を統合した最初のリアルタイム高密度ニューラルネットワーク暗黙的SLAMシステムである。
既存の暗黙的SLAMシステムと比較して、動的データセットの追跡結果は平均軌道誤差(ATE)の精度が平均90%向上していることを示している。
- 参考スコア(独自算出の注目度): 5.267859554944985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SLAM systems based on NeRF have demonstrated superior performance in
rendering quality and scene reconstruction for static environments compared to
traditional dense SLAM. However, they encounter tracking drift and mapping
errors in real-world scenarios with dynamic interferences. To address these
issues, we introduce DDN-SLAM, the first real-time dense dynamic neural
implicit SLAM system integrating semantic features. To address dynamic tracking
interferences, we propose a feature point segmentation method that combines
semantic features with a mixed Gaussian distribution model. To avoid incorrect
background removal, we propose a mapping strategy based on sparse point cloud
sampling and background restoration. We propose a dynamic semantic loss to
eliminate dynamic occlusions. Experimental results demonstrate that DDN-SLAM is
capable of robustly tracking and producing high-quality reconstructions in
dynamic environments, while appropriately preserving potential dynamic objects.
Compared to existing neural implicit SLAM systems, the tracking results on
dynamic datasets indicate an average 90% improvement in Average Trajectory
Error (ATE) accuracy.
- Abstract(参考訳): NeRFに基づくSLAMシステムは、従来の高密度SLAMと比較して、静的環境のレンダリング品質とシーン再構成において優れた性能を示した。
しかし、動的干渉を伴う現実世界のシナリオにおいて、追跡ドリフトとマッピングエラーに遭遇する。
これらの問題に対処するため, DDN-SLAMを導入し, 意味的特徴を統合した最初のリアルタイム高密度ニューラルネットワーク暗黙的SLAMシステムを提案する。
動的追跡干渉に対処するために,意味的特徴と混合ガウス分布モデルを組み合わせた特徴点分割法を提案する。
そこで,不正確な背景除去を避けるために,スパースポイントクラウドサンプリングと背景復元に基づくマッピング戦略を提案する。
動的閉塞を除去する動的意味損失を提案する。
実験により,DDN-SLAMは動的物体を適切に保存しつつ,動的環境における高品質な再構成を堅牢に追跡・生成できることが示された。
既存のニューラルネットワークの暗黙のスラムシステムと比較すると、動的データセットの追跡結果は平均軌道誤差(ate)の90%改善を示している。
関連論文リスト
- Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
暗黙的な神経表現を伴う同時局所化とマッピング(SLAM)が注目されている。
動的環境のための新しいSLAMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-18T09:35:48Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments [9.706447888754614]
動的環境におけるニューラルSLAMの性能を大幅に向上させるNID-SLAMを提案する。
本稿では, セマンティックマスクにおける不正確な領域, 特に辺縁領域における不正確な領域を強化するための新しいアプローチを提案する。
また,ダイナミックシーンの選択戦略を導入し,大規模オブジェクトに対するカメラトラッキングの堅牢性を高める。
論文 参考訳(メタデータ) (2024-01-02T12:35:03Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - 3DS-SLAM: A 3D Object Detection based Semantic SLAM towards Dynamic
Indoor Environments [1.4901625182926226]
3DS-SLAM, 3D Semantic SLAMを導入する。
3DS-SLAMは、意味的制約と幾何学的制約の両方を逐次解決する密結合アルゴリズムである。
TUM RGB-Dデータセットの動的シーケンスを平均98.01%改善している。
論文 参考訳(メタデータ) (2023-10-10T07:48:40Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
高ダイナミックレンジイメージングは、複数の低ダイナミックレンジ入力から情報を取得し、リアルな出力を生成することを目的としている。
既存の手法では、前景やカメラの動きによって引き起こされる入力フレーム間の空間的ずれに焦点を当てることが多い。
本研究では,SCTNet(Semantics Consistent Transformer)を用いたアライメントフリーネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:03:23Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
本稿では,モノクラーRGBD入力に対する高密度ニューラルネットワークの局所化とマッピング(SLAM)手法を提案する。
トラッキングとマッピングの両方が、同じポイントベースのニューラルシーン表現で実行可能であることを実証する。
論文 参考訳(メタデータ) (2023-04-09T16:48:26Z) - Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios [70.70421502784598]
RDS-SLAMは、一般的に使用されているIntel Core i7 CPUのみを使用して、動的シナリオのためのオブジェクトレベルでのセマンティックマップをリアルタイムで構築することができる。
我々は, TUM RGB-DデータセットにおけるRDS-SLAMを評価し, 動的シナリオにおいて, RDS-SLAMはフレームあたり30.3msで動作可能であることを示した。
論文 参考訳(メタデータ) (2022-10-10T11:03:32Z) - Det-SLAM: A semantic visual SLAM for highly dynamic scenes using
Detectron2 [0.0]
本研究では,視覚的SLAMシステムであるORB-SLAM3とディテクトロン2を組み合わせて,Det-SLAMシステムを提案する。
Det-SLAMは従来の動的SLAMシステムよりも弾力性が高く、動的屋内シナリオにおけるカメラ姿勢推定誤差を低減できる。
論文 参考訳(メタデータ) (2022-10-01T13:25:11Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOTはインスタンスセグメンテーションとマルチビュー幾何を組み合わせて、動的オブジェクトのマスクを生成する。
実際にどのオブジェクトが動いているかを判断するために、DOTは、潜在的にダイナミックなオブジェクトの最初のインスタンスを抽出し、次に推定されたカメラモーションで、測光再投射誤差を最小限にして、そのようなオブジェクトを追跡する。
提案手法はORB-SLAM 2の精度とロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-09-30T18:36:28Z) - FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow [17.040818114071833]
ダイナミック/静的セグメンテーションとカメラのエゴモーション推定を同時に実現する新しいRGB-D SLAMソリューションを提案する。
我々の新しい特徴は、RGB-D点雲のダイナミックセマンティクスを強調するために光学フロー残基を使うことである。
論文 参考訳(メタデータ) (2020-03-11T04:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。