On the Expressive Power of Graph Neural Networks
- URL: http://arxiv.org/abs/2401.01626v2
- Date: Fri, 8 Mar 2024 19:57:35 GMT
- Title: On the Expressive Power of Graph Neural Networks
- Authors: Ashwin Nalwade, Kelly Marshall, Axel Eladi, Umang Sharma
- Abstract summary: Graph Neural Networks (GNNs) can solve a diverse set of tasks in fields including social science, chemistry, and medicine.
By extending deep learning to graph-structured data, GNNs can solve a diverse set of tasks in fields including social science, chemistry, and medicine.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The study of Graph Neural Networks has received considerable interest in the
past few years. By extending deep learning to graph-structured data, GNNs can
solve a diverse set of tasks in fields including social science, chemistry, and
medicine. The development of GNN architectures has largely been focused on
improving empirical performance on tasks like node or graph classification.
However, a line of recent work has instead sought to find GNN architectures
that have desirable theoretical properties - by studying their expressive power
and designing architectures that maximize this expressiveness.
While there is no consensus on the best way to define the expressiveness of a
GNN, it can be viewed from several well-motivated perspectives. Perhaps the
most natural approach is to study the universal approximation properties of
GNNs, much in the way that this has been studied extensively for MLPs. Another
direction focuses on the extent to which GNNs can distinguish between different
graph structures, relating this to the graph isomorphism test. Besides, a GNN's
ability to compute graph properties such as graph moments has been suggested as
another form of expressiveness. All of these different definitions are
complementary and have yielded different recommendations for GNN architecture
choices. In this paper, we would like to give an overview of the notion of
"expressive power" of GNNs and provide some valuable insights regarding the
design choices of GNNs.
Related papers
- Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN
Expressiveness [35.409017863665575]
Homomorphism expressivity measures the ability of GNN models to count graphs under homomorphism.
By examining four classes of prominent GNNs as case studies, we derive simple, unified, and elegant descriptions of their homomorphism expressivity.
Our results provide novel insights into a series of previous work, unify the landscape of different subareas in the community, and settle several open questions.
arXiv Detail & Related papers (2024-01-16T17:23:23Z) - Uplifting the Expressive Power of Graph Neural Networks through Graph
Partitioning [3.236774847052122]
We study the expressive power of graph neural networks through the lens of graph partitioning.
We introduce a novel GNN architecture, namely Graph Partitioning Neural Networks (GPNNs)
arXiv Detail & Related papers (2023-12-14T06:08:35Z) - How Expressive are Graph Neural Networks in Recommendation? [17.31401354442106]
Graph Neural Networks (GNNs) have demonstrated superior performance on various graph learning tasks, including recommendation.
Recent research has explored the expressiveness of GNNs in general, demonstrating that message passing GNNs are at most as powerful as the Weisfeiler-Lehman test.
We propose the topological closeness metric to evaluate GNNs' ability to capture the structural distance between nodes.
arXiv Detail & Related papers (2023-08-22T02:17:34Z) - The Expressive Power of Graph Neural Networks: A Survey [9.08607528905173]
We conduct a first survey for models for enhancing expressive power under different forms of definition.
The models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.
arXiv Detail & Related papers (2023-08-16T09:12:21Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Theoretically Improving Graph Neural Networks via Anonymous Walk Graph
Kernels [25.736529232578178]
Graph neural networks (GNNs) have achieved tremendous success in graph mining.
MPGNNs, as the prevailing type of GNNs, have been theoretically shown unable to distinguish, detect or count many graph substructures.
We propose GSKN, a GNN model with a theoretically stronger ability to distinguish graph structures.
arXiv Detail & Related papers (2021-04-07T08:50:34Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.