Uplifting the Expressive Power of Graph Neural Networks through Graph
Partitioning
- URL: http://arxiv.org/abs/2312.08671v1
- Date: Thu, 14 Dec 2023 06:08:35 GMT
- Title: Uplifting the Expressive Power of Graph Neural Networks through Graph
Partitioning
- Authors: Asela Hevapathige, Qing Wang
- Abstract summary: We study the expressive power of graph neural networks through the lens of graph partitioning.
We introduce a novel GNN architecture, namely Graph Partitioning Neural Networks (GPNNs)
- Score: 3.236774847052122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have paved its way for being a cornerstone in
graph related learning tasks. From a theoretical perspective, the expressive
power of GNNs is primarily characterised according to their ability to
distinguish non-isomorphic graphs. It is a well-known fact that most of the
conventional GNNs are upper-bounded by Weisfeiler-Lehman graph isomorphism test
(1-WL). In this work, we study the expressive power of graph neural networks
through the lens of graph partitioning. This follows from our observation that
permutation invariant graph partitioning enables a powerful way of exploring
structural interactions among vertex sets and subgraphs, and can help uplifting
the expressive power of GNNs efficiently. Based on this, we first establish a
theoretical connection between graph partitioning and graph isomorphism. Then
we introduce a novel GNN architecture, namely Graph Partitioning Neural
Networks (GPNNs). We theoretically analyse how a graph partitioning scheme and
different kinds of structural interactions relate to the k-WL hierarchy.
Empirically, we demonstrate its superior performance over existing GNN models
in a variety of graph benchmark tasks.
Related papers
- GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks [20.05098366613674]
We introduce GNNAnatomy, a visual analytics system designed to generate and evaluate multi-level explanations for graph classification tasks.
GNNAnatomy uses graphlets, primitive graph substructures, to identify the most critical substructures in a graph class by analyzing the correlation between GNN predictions and graphlet frequencies.
We demonstrate the effectiveness of GNNAnatomy through case studies on synthetic and real-world graph datasets from sociology and biology domains.
arXiv Detail & Related papers (2024-06-06T23:09:54Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - On the Expressive Power of Graph Neural Networks [0.0]
Graph Neural Networks (GNNs) can solve a diverse set of tasks in fields including social science, chemistry, and medicine.
By extending deep learning to graph-structured data, GNNs can solve a diverse set of tasks in fields including social science, chemistry, and medicine.
arXiv Detail & Related papers (2024-01-03T08:54:56Z) - A Topological characterisation of Weisfeiler-Leman equivalence classes [0.0]
Graph Neural Networks (GNNs) are learning models aimed at processing graphs and signals on graphs.
In this article, we rely on the theory of covering spaces to fully characterize the classes of graphs that GNNs cannot distinguish.
We show that the number of indistinguishable graphs in our dataset grows super-exponentially with the number of nodes.
arXiv Detail & Related papers (2022-06-23T17:28:55Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
We show that standard Graph Neural Networks (GNNs) produce more discriminative representations than the Weisfeiler-Lehman (WL) algorithm.
We also show that simple convolutional architectures with white inputs, produce equivariant features that count the closed paths in the graph.
arXiv Detail & Related papers (2022-05-19T18:40:25Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
We show that Folklore Graph Neural Networks (FGNN) are the most expressive architectures proposed so far for a given tensor order.
FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms.
arXiv Detail & Related papers (2020-06-28T16:35:45Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.