LESEN: Label-Efficient deep learning for Multi-parametric MRI-based
Visual Pathway Segmentation
- URL: http://arxiv.org/abs/2401.01654v1
- Date: Wed, 3 Jan 2024 10:22:13 GMT
- Title: LESEN: Label-Efficient deep learning for Multi-parametric MRI-based
Visual Pathway Segmentation
- Authors: Alou Diakite (1 and 2), Cheng Li (1), Lei Xie (3), Yuanjing Feng (3),
Hua Han (1 and 2), Shanshan Wang (1 and 4) ( (1) Paul C. Lauterbur Research
Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China, (2) University of Chinese
Academy of Sciences, Beijing, China, (3) Zhejiang University of Technology,
Hangzhou, China, (4) Peng Cheng Laboratory, Shenzhen, China)
- Abstract summary: We propose a label-efficient deep learning method with self-ensembling (LESEN)
LESEN incorporates supervised and unsupervised losses, enabling the student and teacher models to mutually learn from each other.
Our experiments on the human connectome project (HCP) dataset demonstrate the superior performance of our method.
- Score: 5.726588626363204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has shown the potential of deep learning in multi-parametric
MRI-based visual pathway (VP) segmentation. However, obtaining labeled data for
training is laborious and time-consuming. Therefore, it is crucial to develop
effective algorithms in situations with limited labeled samples. In this work,
we propose a label-efficient deep learning method with self-ensembling (LESEN).
LESEN incorporates supervised and unsupervised losses, enabling the student and
teacher models to mutually learn from each other, forming a self-ensembling
mean teacher framework. Additionally, we introduce a reliable unlabeled sample
selection (RUSS) mechanism to further enhance LESEN's effectiveness. Our
experiments on the human connectome project (HCP) dataset demonstrate the
superior performance of our method when compared to state-of-the-art
techniques, advancing multimodal VP segmentation for comprehensive analysis in
clinical and research settings. The implementation code will be available at:
https://github.com/aldiak/Semi-Supervised-Multimodal-Visual-Pathway-
Delineation.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - LiSD: An Efficient Multi-Task Learning Framework for LiDAR Segmentation and Detection [6.813145466843275]
LiSD is a voxel-based encoder-decoder framework that addresses both segmentation and detection tasks.
It achieves the state-of-the-art performance of 83.3% mIoU on the nuScenes segmentation benchmark for lidar-only methods.
arXiv Detail & Related papers (2024-06-11T07:26:54Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - DSAL: Deeply Supervised Active Learning from Strong and Weak Labelers
for Biomedical Image Segmentation [13.707848142719424]
We propose a deep active semi-supervised learning framework, DSAL, combining active learning and semi-supervised learning strategies.
In DSAL, a new criterion based on deep supervision mechanism is proposed to select informative samples with high uncertainties.
We use the proposed criteria to select samples for strong and weak labelers to produce oracle labels and pseudo labels simultaneously at each active learning iteration.
arXiv Detail & Related papers (2021-01-22T11:31:33Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Deep Active Learning by Model Interpretability [7.3461534048332275]
In this paper, we introduce the linearly separable regions of samples to the problem of active learning.
We propose a novel Deep Active learning approach by Model Interpretability (DAMI)
To keep the maximal representativeness of the entire unlabeled data, DAMI tries to select and label samples on different linearly separable regions.
arXiv Detail & Related papers (2020-07-23T16:06:27Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.